Non-invasive evaluation of skin tension lines with elastic waves

Files in This Item:
File Description SizeFormat 
NiAnnaidh_SRAT.pdf951.62 kBAdobe PDFDownload
Title: Non-invasive evaluation of skin tension lines with elastic waves
Authors: Deroy, Claire
Destrade, Michel
McAlinden, Aidan
Kirby, Barbara
Ní Annaidh, Aisling
Permanent link:
Date: 20-Nov-2016 2018-10-25T08:47:04Z
Abstract: Background: Since their discovery by Karl Langer in the 19th Century, Skin Tension Lines (STLs) have been used by surgeons to decide the location and orientation of an incision. Although these lines are patient-specific, most surgeons rely on generic maps to determine their orientation. Beyond the imprecise pinch test, there still exists no accepted method for determining the STLs in vivo. Methods: (i) The speed of an elastic motion travelling radially on the skin of canine cadavers was measured with a commercial device called the Reviscometer R . (ii) Similar to the original experiments conducted by Karl Langer, circular excisions were made on the skin and the subsequent geometric changes to the resulting wounds and excised samples were used to determine the orientation of STLs. Results A marked anisotropy in the speed in the elastic wave travelling radially was observed. The orientation of the fastest wave was found to correlate with the orientation of the elongated wound (P < 0.001, R2 = 74%). Similarly, the orientation of fastest wave was the same for both in vivo and excised isolated samples, indicating that the STLs have a structural basis. Resulting wounds expanded by an average area of 9% (+16% along STL and −10% across) while excised skin shrunk by an average of 33% (23% along STL and 10% across). Conclusion: Elastic surface wave propagation has been validated experimentally as a robust method for determining the orientation of STLs nondestructively and non-invasively. This study has implications for the identification of STLs and for the prediction of skin tension levels, both important factors in reconstructive surgeries for both medicine and veterinary medicine.
Type of material: Journal Article
Publisher: Wiley
Journal: Skin Research & Technology
Volume: 23
Issue: 3
Start page: 326
End page: 335
Copyright (published version): 2017 Wiley
Keywords: ReviscometerSkin tensionLanger LinesDog skinAniostropy
DOI: 10.1111/srt.12339
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mechanical & Materials Engineering Research Collection
Medicine Research Collection

Show full item record

Citations 50

Last Week
Last month
checked on Jan 22, 2019

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.