The Dirichlet problem for the slab with entire data and a difference equation for harmonic functions

DC FieldValueLanguage
dc.contributor.authorKhavinson, Dmitry-
dc.contributor.authorLundberg, Erik-
dc.contributor.authorRender, Hermann-
dc.date.accessioned2018-11-30T16:37:37Z-
dc.date.available2018-11-30T16:37:37Z-
dc.date.copyright2016 Canadian Mathematical Societyen_US
dc.date.issued2017-03-
dc.identifier.citationCanadian Mathematics Bulletinen_US
dc.identifier.urihttp://hdl.handle.net/10197/9575-
dc.description.abstractIt is shown that the Dirichlet problem for the slab (a,b)×Rd with entire boundary data has an entire solution. The proof is based on a generalized Schwarz reflection principle. Moreover, it is shown that for a given entire harmonic function g the inhomogeneous difference equation h(t+1,y)−h(t,y)=g(t,y) has an entire harmonic solution h.en_US
dc.language.isoenen_US
dc.publisherCanadian Mathematical Societyen_US
dc.subjectReflection principleen_US
dc.subjectEntire harmonic functionen_US
dc.subjectAnalytic continuationen_US
dc.titleThe Dirichlet problem for the slab with entire data and a difference equation for harmonic functionsen_US
dc.typeJournal Articleen_US
dc.internal.authorcontactotherhermann.render@ucd.ieen_US
dc.statusPeer revieweden_US
dc.identifier.volume60en_US
dc.identifier.startpage146en_US
dc.identifier.endpage153en_US
dc.identifier.doi10.4153/CMB-2016-018-x-
dc.neeo.contributorKhavinson|Dmitry|aut|-
dc.neeo.contributorLundberg|Erik|aut|-
dc.neeo.contributorRender|Hermann|aut|-
dc.internal.rmsid644769896-
dc.date.updated2017-10-24T09:51:46Z-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Mathematics and Statistics Research Collection
Files in This Item:
File Description SizeFormat 
2016KLRPaper2.pdf116.14 kBAdobe PDFDownload
Show simple item record

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.