A Characterization of the Khavinson-Shapiro Conjecture Via Fischer Operators

DC FieldValueLanguage
dc.contributor.authorRender, Hermann-
dc.date.accessioned2019-01-07T14:04:27Z-
dc.date.available2019-01-07T14:04:27Z-
dc.date.copyright2017 Springeren_US
dc.date.issued2016-10-
dc.identifier.citationPotential Analysisen_US
dc.identifier.urihttp://hdl.handle.net/10197/9584-
dc.description.abstractThe Khavinson-Shapiro conjecture states that ellipsoids are the only bounded domains in euclidean space satisfying the following property (KS): the solution of the Dirichlet problem for polynomial data is polynomial. In this paper we show that property (KS) for a domain Ω is equivalent to the surjectivity of a Fischer operator associated to the domain Ω.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1007/s11118-016-9555-0en_US
dc.subjectDirichlet problemen_US
dc.subjectHarmonic extensionen_US
dc.subjectKhavinson-Shapiro conjectureen_US
dc.titleA Characterization of the Khavinson-Shapiro Conjecture Via Fischer Operatorsen_US
dc.typeJournal Articleen_US
dc.internal.authorcontactotherhermann.render@ucd.ieen_US
dc.statusPeer revieweden_US
dc.identifier.volume45en_US
dc.identifier.issue3en_US
dc.identifier.startpage539en_US
dc.identifier.endpage543en_US
dc.identifier.doi10.1007/s11118-016-9555-0-
dc.neeo.contributorRender|Hermann|aut|-
dc.internal.rmsid644769892-
dc.date.updated2017-10-24T09:57:09Z-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:Mathematics and Statistics Research Collection
Files in This Item:
File Description SizeFormat 
2015RenderCharactKhavShapConj.pdf237.25 kBAdobe PDFDownload
Show simple item record

SCOPUSTM   
Citations 50

1
Last Week
0
Last month
checked on Feb 12, 2019

Google ScholarTM

Check

Altmetric


This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.