Assessing women's lacrosse head impacts using finite element modelling

Files in This Item:
Access to this item has been restricted by the copyright holder until:2020-01-31
File Description SizeFormat 
Clark_et_al_2018_-_Assessing_women's_lacrosse_head_impacts_-_UCD_Repository.pdf842.01 kBAdobe PDFDownload    Request a copy
Title: Assessing women's lacrosse head impacts using finite element modelling
Authors: Clark, J. Michio
Hoshizaki, Thomas Blaine
Gilchrist, M. D.
Permanent link:
Date: Apr-2018
Online since: 2019-04-15T10:46:01Z
Abstract: Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations.
Type of material: Journal Article
Publisher: Elsevier
Journal: Journal of the Mechanical Behavior of Biomedical Materials
Volume: 80
Start page: 20
End page: 26
Copyright (published version): 2018 Elsevier
Keywords: ConcussionBrain strainImpact mechanicsInjury preventionHelmet
DOI: 10.1016/j.jmbbm.2018.01.020
Language: en
Status of Item: Peer reviewed
Appears in Collections:Mechanical & Materials Engineering Research Collection

Show full item record

Citations 50

checked on Apr 22, 2019

Google ScholarTM



This item is available under the Attribution-NonCommercial-NoDerivs 3.0 Ireland. No item may be reproduced for commercial purposes. For other possible restrictions on use please refer to the publisher's URL where this is made available, or to notes contained in the item itself. Other terms may apply.