Now showing 1 - 3 of 3
  • Publication
    Exploring stable-based behaviour and behaviour switching for the detection of bilateral pain in equines
    Efficient and sensitive animal pain detection approaches are increasingly studied with the goal of improving animal welfare and monitoring the efficacy of treatment and rehabilitation. The aim of this study was to determine the potential of various behaviours as sensitive indicators of subtle inflammation states in equines. The long-term goal of this research is to understand how to objectively and remotely classify behaviours that are associated with inflammation using wearable inertial sensor technologies. This study represents a proof-of-concept investigation to ascertain what behavioural indices might be important in long-term monitoring of mild bilateral inflammation and recovery with a view to translating the approach to a technology-enabled remote monitoring paradigm. Bilateral synovitis of the intercarpal joints was induced in seven equines using lipopolysaccharide (0.25 ng) at time zero. The horses were confined to stables and monitored intermittently over seven days by stable-fixed video cameras. White blood cell count, carpal circumference and food availability were recorded across the study. An ethogram was created to manually annotate behaviours from video footage following lameness induction at seven different timepoints across a 1-week period. Behaviour data were processed extracting the duration, frequency and variability of behaviours. One-way repeated measures ANOVA revealed a significant time effect for white blood cell count and behaviour switching. There were no significant changes in carpal circumferences and heart rate measures over the sampling period. Food availability appears to be an important contextual factor that should be considered in pain-related behavioural studies. We conclude that behaviour variability may be a promising indicator of subtle bilateral inflammation which should be further explored in larger controlled trials and different pain presentations. Future work will seek to optimise grouping of behaviours associated with inflammation that can be detected using wearable technologies for future remote monitoring protocols.
      29Scopus© Citations 5
  • Publication
    Intra-articular delivery of a nanocomplex comprising salmon calcitonin, hyaluronic acid, and chitosan using an equine model of joint inflammation
    Polyelectrolyte nanoparticle constructs (NPs) comprising salmon calcitonin (sCT), chitosan (CS), and hyaluronic acid (HA) were previously established as having anti-inflammatory potential when injected via the intra-articular (i.a.) route to a mouse model. We attempted to translate the formulation to a large animal model, the lipopolysaccharide (LPS)-stimulated equine model of joint inflammation. The aim was to manufacture under aseptic conditions to produce sterile pyrogen-free NPs, to confirm physicochemical characteristics, and to test toxicity and efficacy in a pilot study. NP dispersions were successfully formulated using pharmaceutical-grade source materials and were aseptically manufactured under GMP-simulated conditions in a grade A modular aseptic processing workstation. The NP formulation had no detectable pathogen or endotoxin contamination. NPs were then tested versus a lactated Ringer’s solution control following single i.a. injections to the radiocarpal joints of two groups of four horses pre-treated with LPS, followed by arthrocentesis at set intervals over 1 week. There was no evidence of treatment-related toxicity over the period. While there were no differences between clinical read-outs of the NP and the control, two synovial fluid-derived biomarkers associated with cartilage turnover revealed a beneficial effect of NPs. In conclusion, NPs comprising well-known materials were manufactured for an equine i.a.-injectable pilot study and yielded no NP-attributable toxicity. Evidence of NP-associated benefit at the level of secondary endpoints was detected as a result of decreases in synovial fluid inflammatory biomarkers.
    Scopus© Citations 12  515
  • Publication
    Interovulatory intervals in mares receiving deslorelin implants in Ireland (2009 to 2010)
    Deslorelin acetate implants, recently licensed in Ireland and the UK for ovulation induction in mares, have been associated with prolonged interovulatory intervals in USA studies, leading to the practice of removing implants postovulation. Trial data in Australia indicate a less pronounced effect on interovulatory intervals, suggesting possible geographical variation. Objectives of the current study were to assess the effect of deslorelin implants, with and without removal on oestrous cycle length in Irish- and UK-based Thoroughbred broodmares. Data were collected retrospectively from 88 oestrous cycles. A statistically significant difference (P=0.02) was found between interovulatory intervals in mares in which the deslorelin implant was not removed, compared with administration and removal of the implant or the use of human chorionic gonadotrophin. The results suggest that implant removal when possible is advisable. The delay in subsequent ovulations was less marked than that reported in some studies from the USA. This information is useful in deciding when to schedule subsequent breeding for mares which received a deslorelin implant during the previous oestrous period and provides evidence to counter-concerns that mares treated with deslorelin implants may experience a long delay in return to oestrus if the implant is not removed.
    Scopus© Citations 4  433