Now showing 1 - 10 of 20
  • Publication
    Applying Haddon’s matrix to bovine injury prevention: An example using white line disease
    (World Association for Buiatrics, 2016-07-08) ; ; ;
    Haddon’s matrix is a model used to conceptualize injury occurrence. This model defines injury as energy transfer, by the agent to the host, in quantities or rates exceeding the tolerance of the host’s tissue. While this approach has been used in human injury research for over 30 years to identify risk factors and develop preventive interventions, we have not seen it applied to animal injury. Lameness, an etiologically complex condition, is a source of both economic losses and welfare concerns to the cattle industry. We introduce Haddon’s matrix as an approach to viewing traumatic animal injury using bovine white line disease as an example.
  • Publication
    A HACCP-based approach to mastitis control in dairy herds. Part 1: Development
    (Springer (Biomed Central Ltd.), 2011) ; ; ;
    Hazard Analysis and Critical Control Points (HACCP) systems are a risk based preventive approach developed to increase levels of food safety assurance. This is part 1 of a pilot study on the development, implementation and evaluation of a HACCP-based approach for the control of good udder health in dairy cows. The paper describes the use of a novel approach based on a deconstruction of the infectious process in mastitis to identify Critical Control Points (CCPs) and develop a HACCP-based system to prevent and control mastitis in dairy herds. The approach involved the creation of an Infectious Process Flow Diagram, which was then cross-referenced to two production process flow diagrams of the milking process and cow management cycle. The HACCP plan developed, may be suitable for customisation and implementation on dairy farms. This is a logical, systematic approach to the development of a mastitis control programme that could be used as a template for the development of control programmes for other infectious diseases in the dairy herd.
  • Publication
    Changing epidemiology of the tick-borne bovine parasite, Babesia divergens
    Bovine babesiosis is caused by the tick-borne blood parasite, Babesia divergens. A survey of veterinary practitioners and farmers in Ireland in the 1980’s revealed an annual incidence of 1.7% associated with considerable economic losses. However, two subsequent surveys in the 1990’s indicated a decline in clinical babesiosis. In order to determine whether any such changes have affected the incidence of bovine babesiosis in Ireland, a questionnaire survey of farmers and veterinarians was carried out and compared against data from previous surveys.
  • Publication
    Changing incidence of bovine babesiosis in Ireland
    Background: In Ireland bovine babesiosis is caused by the tick-borne blood parasite, Babesia divergens. A survey of veterinary practitioners and farmers in the 1980’s revealed an annual incidence of 1.7% associated with considerable economic losses. However, two subsequent surveys in the 1990’s indicated a decline in clinical babesiosis. Recent evidence from continental Europe suggests that, probably due to climate change, the distribution of the tick vector of B. divergens, Ixodes ricinus is extending to more northerly regions and higher altitudes. In addition, milder winters are thought to widen the window of tick activity. In order to determine whether any such changes have affected the incidence of bovine babesiosis in Ireland, a questionnaire survey of farmers and veterinarians was carried out and compared with data from previous surveys. Results: Our survey indicates that while the incidence of clinical disease has continued to decline, cases can occur at any time of year. In contrast to previous surveys, affected farms were the same size as unaffected ones. There was no correlation between disease risk and the presence of deer on the land. Disease severity and mortality rates were increased because many infections were advanced by the time they were detected and treated. Conclusion: While the precise reasons for the decline in the incidence of redwater are unknown, changes in agricultural practice are likely to be of importance. A reversal of the trend could be devastating, as vigilance among farmers and veterinarians is flagging and the national herd is losing its protective immunity to disease.
      414Scopus© Citations 25
  • Publication
    Insights into udder health and intramammary antibiotic usage on Irish dairy farms during 2003-2010
    (Springer (Biomed Central Ltd.), 2012) ; ;
    By international standards, Ireland is a relatively small dairy producer. However, the industry plays a critical role to the national economy, accounting for approximately 3% of national gross domestic product. This paper presents insights into udder health and intramammary antibiotic usage on Irish dairy farms during 2003-2010, based on data from several sources. Three data sources were used, including data on milk recording data, intramammary antibiotic sales and animal health assessment. The milk recording data included a single unadjusted herd-level somatic cell count (SCC) value for each herd at each milk recording, being the arithmetic mean of cow-level SCC of each cow at that recording, weighted by cow-level yield. These data were used to calculate the percentage of herds each month where the unadjusted herd SCC exceeded 200,000 and 400,000 cells/mL. Two logistic generalised estimating-equations (GEE) models were developed, the outcome variable being either the probability that the monthly SCC of a herd was greater than 400,000 cells/mL or less than or equal to 200,000 cells/mL. Spring herds had a lower probability of a high SCC (> 400,000 cells/mL) during February to October compared to non-Spring herds but a higher probability between November to January. The odds of a high SCC were greater in 2005, 2006, 2009 and 2010 but less in 2007 and 2008 compared to 2004. Smaller herds had higher odds of having a high SCC compared to larger herds. We present the number of intramammary tubes and the quantity of active substance (kg) sold annually in Ireland during 2003-2010. We infer an incidence of clinical mastitis of 54.0 cases per 100 cow-years at risk, assuming 4 tubes per treatment regime, one affected quarter per cow, tubes restricted to clinical cases only and 100% of treated cases considered new cases, based on data collected on sales of in-lactation intra-mammary antibiotics. With differing assumptions, this estimate varied between 25.8 and 77.0 cases per 100 cow-years at risk. Using data on sales of dry cow therapy intra-mammary antibiotics, we also infer that most Irish dairy farmers use blanket dry cow therapy. It is important that Ireland has an objective understanding of current levels of udder health, to facilitate benchmarking and improvement into the future. Udder health is a concern on a number of Irish dairy farms. High SCC results were present throughout the year, but more marked towards the start and end of each milking season. Animal Health Ireland recently commenced a major national programme, CellCheck, in collaboration with a broad range of stakeholders, to support national SCC improvement. In this paper, relevant European and national legislation is also reviewed.
      1047Scopus© Citations 23
  • Publication
    Seroprevalence of Leptospira Hardjo in the Irish suckler cattle population
    (Springer (Biomed Central Ltd.), 2012) ; ; ;
    Background: Prior to the present study, the seroprevalence of leptospirosis in Irish suckler herds was unknown. In this study, we describe the herd and animal-level prevalence of Leptospira Hardjo infection in the Irish suckler cattle population. For the purposes of the study, the 26 counties of the Republic of Ireland were divided into 6 regions from which a representative number of herds were selected. A herd was considered eligible for sampling if it was not vaccinating against leptospirosis and if it contained ≥ 9 breeding animals of beef breed ≥ 12 months of age. In total, 288 randomly selected herds were eligible for inclusion in the seroprevalence dataset analysis. Serological testing was carried out using a commercially available monoclonal antibody-capture ELISA, (sensitivity 100%; specificity 86.67%). Results: Herds were categorised as either “Free from Infection” or “Infected” using the epidemiological software tool, FreeCalc 2.0. Using this classification, 237 herds were “Infected” (82.29%). The South West and South East regions had the highest herd prevalence. The regional effect on herd prevalence was largely mirrored by breeding herd size. A true animal-level prevalence of 41.75% was calculated using the epidemiological software tool, TruePrev. There was a statistically significant regional trend, with true prevalence being highest in the South East (P < 0.05). The median Breeding Herd Size (BHS), when categorised into quartiles, had a statistically significant influence on individual animal true seroprevalence (P < 0.001); true seroprevalence increased with increasing BHS. Conclusions: Leptospirosis is a widespread endemic disease in the Republic of Ireland. It is possible that economic losses due to leptospirosis in unvaccinated Irish suckler herds may be underestimated.
      488Scopus© Citations 27
  • Publication
    An observational study of ear-tagged calf mortality (1 to 100 days) on Irish dairy farms and associations between biosecurity practices and calf mortality on farms participating in a Johne's disease control program
    Postnatal mortality among replacement stock has a detrimental effect on the social, economic, and environmental sustainability of dairy production. Calf mortality rates vary between countries and show differences in temporal trends; most, however, are characterized by high levels of between-farm variability. Explaining this variation can be difficult because herd-level information on management practices relevant to calf health is often not available. The Irish Johne's Control Programme (IJCP) contains a substantial on-farm monitoring program called the Veterinary Risk Assessment and Management Plan (VRAMP). Although this risk assessment is largely focused on factors relevant to the transmission of paratuberculosis, many of its principles are good practice biocontainment policies that are also advocated for the protection of calf health. The objectives of this study were (1) to quantify mortality in ear-tagged Irish dairy calves between 2016 and 2020 using both survival and risk approaches, (2) to determine risk factors for 100-d cumulative mortality hazard in ear-tagged Irish dairy calves between 2016 and 2020, (3) to determine whether 100-d cumulative mortality hazard was higher in ear-tagged calves within herds registered in the IJCP versus those that were not registered in the IJCP and whether there were differences between these cohorts over time, and (4) within IJCP herds, to determine whether VRAMP score or changes in VRAMP score were associated with 100-d cumulative mortality hazard. Excluding perinatal mortality, the overall 100-d cumulative mortality hazard was 4.1%. Calf mortality was consistently underestimated using risk approaches that did not account for calf censoring. Cox proportional hazards models showed that cumulative mortality hazard was greater in male calves; particularly, calves born to Jersey breed dams and those with a beef breed sire. Mortality hazard increased with increasing herd size, was highest in calves born in herds that contract-reared heifers, and lowest in those born in mixed dairy-beef enterprises. Mortality hazard decreased over time with the mortality hazard in 2020 being 0.83 times that of 2016. Mortality hazard was higher in IJCP-registered herds than nonregistered herds (hazard ratio 1.06, 95% CI 1.01–1.12), likely reflecting differences in herds that enrolled in the national program. However, we detected a significant interaction between IJCP status (enrolled vs. not enrolled) and year (hazard ratio 0.96, 95% CI 0.92–1.00), indicating that the decrease in mortality hazard between 2016 and 2020 was greater in IJCP herds versus non-IJCP herds. Finally, increasing VRAMP scores (indicating higher risk for paratuberculosis transmission) were positively associated with increased calf mortality hazard. Postnatal calf mortality rates in Irish dairy herds declined between 2016 and 2020. Our study suggests that implementation of recommended biocontainment practices to control paratuberculosis in IJCP herds was associated with a reduction in calf mortality hazard.
  • Publication
    Herd-level risk factors associated with Leptospira Hardjo seroprevalence in Beef/Suckler herds in the Republic of Ireland
    (Springer (Biomed Central Ltd.), 2012) ; ; ;
    Background: The aim of the present study was to investigate risk factors for herd seropositivity to Leptospira Hardjo in Irish suckler herds. Herds were considered eligible for the study if they were unvaccinated and contained ≥ 9 breeding animals of beef breed which were ≥ 12 months of age. The country was divided into six regions using county boundaries. Herd and individual animal prevalence data were available from the results of a concurrent seroprevalence study. Herds were classified as either "Free from Infection" or "Infected" based on a minimum expected 40% within-herd prevalence. Questionnaires were posted to 320 farmers chosen randomly from 6 regions, encompassing 25 counties, of the Republic of Ireland. The questionnaire was designed to obtain information about vaccination; reproductive disease; breeding herd details; the presence of recognized risk factors from previous studies; and husbandry on each farm. Data collected from 128 eligible herds were subjected to statistical analysis. Results: Following the use of Pearson's Chi-Square Test, those variables associated with a herd being "infected" with a significance level of P < 0.2 were considered as candidates for multivariable logistic regression modelling. Breeding herd size was found to be a statistically significant risk factor after multivariable logistic regression. The odds of a herd being positive for leptospiral infection were 5.47 times higher (P = 0.032) in herds with 14 to 23 breeding animals compared with herds with ≤ 13 breeding animals, adjusting for Region, and 7.08 times higher (P = 0.033) in herds with 32.6 to 142 breeding animals. Conclusions: Breeding herd size was identified as a significant risk factor for leptospiral infection in Irish suckler herds, which was similar to findings of previous studies of leptospirosis in dairy herds.
      504Scopus© Citations 18
  • Publication
    Herd and within-herd BoHV-1 prevalence among irish beef herds submitting bulls for entry to a performance testing station
    (Springer (Biomed Central Ltd.), 2008) ; ; ;
    Infectious bovine rhinotracheitis (IBR), caused by bovine herpes virus 1 (BoHV-1), may result in various clinical consequences, including severe respiratory disease and conjunctivitis, venereal disease and reduced reproductive performance and abortion. This paper presents the serosurveillance findings from an intake of bulls into a performance testing station in Ireland during November 2007. The herd and within-herd BoHV-1 prevalence in 53 Irish beef herds and the risk factors for infection in these herds were determined, among bulls entering a beef performance testing station in Ireland. BoHV-1 status was determined for 41 herds, of which 30 (73.2%) herds were infected and the mean within-herd BoHV-1 prevalence was 28 (± 20)%. Multivariate exact logistic modelling revealed increasing numbers of contiguous herds and decreasing percentage of males within the herd as significant risk factors associated with infected herds. These findings highlight the high prevalence of BoHV-1 infection in those Irish beef herds that submitted bulls to this performance testing station, and raise concerns regarding IBR control nationally.
      368Scopus© Citations 18
  • Publication
    Development of a syndromic surveillance system for Irish dairy cattle using milk recording data
    In the last decade and a half, emerging vector-borne diseases have become a substantial threat to cattle across Europe. To mitigate the impact of the emergence of new diseases, outbreaks must be detected early. However, the clinical signs associated with many diseases may be nonspecific. Furthermore, there is often a delay in the development of new diagnostic tests for novel pathogens which limits the ability to detect emerging disease in the initial stages. Syndromic Surveillance has been proposed as an additional surveillance method that could augment traditional methods by detecting aberrations in non-specific disease indicators. The aim of this study was to develop a syndromic surveillance system for Irish dairy herds based on routinely collected milk recording and meteorological data. We sought to determine whether the system would have detected the 2012 Schmallenberg virus (SBV) incursion into Ireland earlier than conventional surveillance methods. Using 7,743,138 milk recordings from 730,724 cows in 7037 herds between 2007 and 2012, linear mixed-effects models were developed to predict milk yield and alarms generated with temporally clustered deviations from predicted values. Additionally, hotspot spatial analyses were conducted at corresponding time points. Using a range of thresholds, our model generated alarms throughout September 2012, between 4 and 6 weeks prior to the first laboratory confirmation of SBV in Ireland. This system for monitoring milk yield represents both a potentially useful tool for early detection of disease, and a valuable foundation for developing similar tools using other metrics.
      245Scopus© Citations 1