Now showing 1 - 8 of 8
  • Publication
    Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS G13D
    Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.
      106
  • Publication
    Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF
    RAF family kinases are central components of the Ras-RAF-MEK-ERK cascade. Dimerization is a key mechanism of RAF activation in response to physiological, pathological and pharmacological signals. It is mediated by a dimer interface region in the RAF kinase domain that is also conserved in KSR, a scaffolding protein that binds RAF, MEK and ERK. The regulation of RAF dimerization is incompletely understood. Especially little is known about the molecular mechanism involved in the selection of the dimerization partner. Previously, we reported that Ras-dependent binding of the tumour suppressor DiRas3 to C-RAF inhibits the C-RAF:B-RAF heterodimerization. Here we show that DiRas3 binds to KSR1 independently of its interaction with activated Ras and RAF. Our data also suggest that depending on the local stoichiometry between DiRas3 and oncogenic Ras, DiRas3 can either enhance homodimerization of KSR1 or recruit KSR1 to the Ras:C-RAF complex and thereby reduce the availability of C-RAF for binding to B-RAF. This mechanism, which is shared between A-RAF and C-RAF, may be involved in the regulation of Ras12V-induced cell transformation by DiRas3.
      476Scopus© Citations 5
  • Publication
    Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation
    RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif. Additionally, we show that the R-spine of RAF interacts with a conserved Trp residue in the vicinity of the NtA motif, connecting the active sites of two protomers and thereby modulating the cooperative interactions in the RAF dimer. Our findings provide a first structure-based mechanism for the auto-transactivation of RAF and could be generally applicable to other kinases, opening new pathways for overcoming dimerization-related drug resistance.
      232Scopus© Citations 33
  • Publication
    Autophosphorylation on S614 inhibits the activity and the transforming potential of BRAF
    The BRAF proto-oncogene serine/threonine-protein kinase, known as BRAF, belongs to the RAF kinase family. It regulates the MAPK/ERK signalling pathway affecting several cellular processes such as growth, survival, differentiation, and cellular transformation. BRAF is mutated in ~8% of all human cancers with the V600E mutation constituting ~90% of mutations. Here, we have used quantitative mass spectrometry to map and compare phosphorylation site patterns between BRAF and BRAF V600E. We identified sites that are shared as well as several quantitative differences in phosphorylation abundance. The highest difference is phosphorylation of S614 in the activation loop which is ~5fold enhanced in BRAF V600E. Mutation of S614 increases the kinase activity of both BRAF and BRAF V600E and the transforming ability of BRAF V600E. The phosphorylation of S614 is mitogen inducible and the result of autophosphorylation. These data suggest that phosphorylation at this site is inhibitory, and part of the physiological shut-down mechanism of BRAF signalling.
      354Scopus© Citations 4
  • Publication
    MAPK kinase signalling dynamics regulate cell fate decisions and drug resistance
    The RAS/RAF/MEK/MAPK kinase pathway has been extensively studied for more than 25 years, yet we continue to be puzzled by its intricate dynamic control and plasticity. Different spatiotemporal MAPK dynamics bring about distinct cell fate decisions in normal vs cancer cells and developing organisms. Recent modelling and experimental studies provided novel insights in the versatile MAPK dynamics concerted by a plethora of feedforward/feedback regulations and crosstalk on multiple timescales. Multiple cancer types and various developmental disorders arise from persistent alterations of the MAPK dynamics caused by RAS/RAF/MEK mutations. While a key role of the MAPK pathway in multiple diseases made the development of novel RAF/MEK inhibitors a hot topic of drug development, these drugs have unexpected side-effects and resistance inevitably occurs. We review how RAF dimerization conveys drug resistance and recent breakthroughs to overcome this resistance.
      317Scopus© Citations 63
  • Publication
    Signaling pathway models as biomarkers: Patient-specific simulations of JNK activity predict the survival of neuroblastoma patients
    Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient–specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.
      1128Scopus© Citations 100
  • Publication
    Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling
    Clinically used RAF inhibitors are ineffective in RAS-mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, post-translational modifications and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
      306Scopus© Citations 34
  • Publication
    Substrate-Trapped Interactors of PHD3 and FIH Cluster in Distinct Signaling Pathways
    Amino acid hydroxylation is a post-translational modification that regulates intra- and inter-molecular protein-protein interactions. The modifications are regulated by a family of 2-oxoglutarate- (2OG) dependent enzymes and, although the biochemistry is well understood, until now only a few substrates have been described for these enzymes. Using quantitative interaction proteomics, we screened for substrates of the proline hydroxylase PHD3 and the asparagine hydroxylase FIH, which regulate the HIF-mediated hypoxic response. We were able to identify hundreds of potential substrates. Enrichment analysis revealed that the potential substrates of both hydroxylases cluster in the same pathways but frequently modify different nodes of signaling networks. We confirm that two proteins identified in our screen, MAPK6 (Erk3) and RIPK4, are indeed hydroxylated in a FIH- or PHD3-dependent mechanism. We further determined that FIH-dependent hydroxylation regulates RIPK4-dependent Wnt signaling, and that PHD3-dependent hydroxylation of MAPK6 protects the protein from proteasomal degradation.
      263Scopus© Citations 59