Now showing 1 - 7 of 7
  • Publication
    Survey on Multi-Access Edge Computing Security and Privacy
    The European Telecommunications Standards Institute (ETSI) has introduced the paradigm of Multi-Access Edge Computing (MEC) to enable efficient and fast data processing in mobile networks. Among other technological requirements, security and privacy are significant factors in the realization of MEC deployments. In this paper, we analyse the security and privacy of the MEC system. We introduce a thorough investigation of the identification and the analysis of threat vectors in the ETSI standardized MEC architecture. Furthermore, we analyse the vulnerabilities leading to the identified threat vectors and propose potential security solutions to overcome these vulnerabilities. The privacy issues of MEC are also highlighted, and clear objectives for preserving privacy are defined. Finally, we present future directives to enhance the security and privacy of MEC services.
      1991Scopus© Citations 177
  • Publication
    A Novel Request Handler Algorithm for Multi-access Edge Computing Platforms in 5G
    Multi-access Edge Computing (MEC) is envisaging a storage and processing infrastructure at the edge of the mobile network to guarantee ultra-low latency and higher bandwidths for the provisioning services emanated by Internet of Things (IoT) devices. To achieve these dynamic requirements, MEC is adopting virtualization technologies that form a cost effective automated infrastructure ideal for 5G and beyond networks. Orchestration is the paramount task of such virtual platforms to manage and control the virtual entities autonomously. Service request handling is one such key orchestration function that handles the incoming requests to the orchestrator in case of a service initiation. However, existing service request handling procedures in MEC are still in a trivial stage. Thus, this paper proposes an advanced service request handling strategy for MEC orchestrator which can consider several factors such as service priority levels, feasibility, and resource availability. The performance of the proposed strategy is analyzed in a simulated environment and its feasibility is demonstrated using a prototype MEC infrastructure.
      7Scopus© Citations 1
  • Publication
    MEC-enabled 5G Use Cases: A Survey on Security Vulnerabilities and Countermeasures
    The future of mobile and internet technologies are manifesting advancements beyond the existing scope of science. The concepts of automated driving, augmented-reality, and machine-type-communication are quite sophisticated and require an elevation of the current mobile infrastructure for launching. The fifth-generation (5G) mobile technology serves as the solution, though it lacks a proximate networking infrastructure to satisfy the service guarantees. Multi-access Edge Computing (MEC) envisages such an edge computing platform. In this survey, we are revealing security vulnerabilities of key 5G-based use cases deployed in the MEC context. Probable security flows of each case are specified, while countermeasures are proposed for mitigating them.
    Scopus© Citations 46  7
  • Publication
    Dynamic Orchestration of Security Services at Fog Nodes for 5G IoT
    Fog Computing is one of the edge computing paradigms that envisages being the proximate processing and storage infrastructure for a multitude of IoT appliances. With its dynamic deployability as a medium level cloud service, fog nodes are enabling heterogeneous service provisioning infrastructure that features scalability, interoperability, and adaptability. Out of the various 5G based services possible with the fog computing platforms, security services are imperative but minimally investigated direct live. Thus, in this research, we are focused on launching security services in a fog node with an architecture capable of provisioning on-demand service requests. As the fog nodes are constrained on resources, our intention is to integrate light-weight virtualization technology such as Docker for forming the service provisioning infrastructure. We managed to launch multiple security instances configured to be Intrusion Detection and Prevention Systems (IDPSs) on the fog infrastructure emulated via a Raspberry Pi-4 device. This environment was tested with multiple network flows to validate its feasibility. In our proposed architecture, orchestration strategies performed by the security orchestrator were stated as guidelines for achieving pragmatic, dynamic orchestration with fog in IoT deployments. The results of this research guarantee the possibility of developing an ambient security service model that facilitates IoT devices with enhanced security.
      465Scopus© Citations 9
  • Publication
    Realizing contact-less applications with Multi-Access Edge Computing
    The entire world progression has ceased with the unexpected outbreak of the COVID-19 pandemic, and urges the requirement for contact-less and autonomous services and applications. Realizing these predominantly Internet of Things (IoT) based applications demands a holistic pervasive computing infrastructure. In this paper, we conduct a survey to determine the possible pervasive approaches for utilizing the Multi-Access Edge Computing (MEC) infrastructure in realizing the requirements of emerging IoT applications. We have formalized specific architectural layouts for the considered IoT applications, while specifying network-level requirements to realize such approaches; and conducted a simulation to test the feasibility of proposed MEC approaches.
      7Scopus© Citations 7
  • Publication
    Novel MEC based Approaches for Smart Hospitals to Combat COVID-19 Pandemic
    COVID-19 or Coronavirus has thrilled the entire world population with uncertainty over their survival and well-being. The impact this pathogen has caused over the globe has been profound due to its unique transmission features; that urges for contact-less strategies to interact and treat the infected. The impending 5G mobile technology is immersing the applications that enable the provisioning of medical and healthcare services in a contact-less manner. The edge computing paradigms offer a de-centralized and versatile networking infrastructure capable of adhering to the novel demands of 5G. In this article, we are considering Multi-Access Edge Computing (MEC) flavour of the edge paradigms for realizing the contact-less approaches that assist the mediation of COVID-19 and the future of healthcare. In order to formulate this ideology, we propose three use cases and discuss their implementation in the MEC context. Further, the requirements for launching these services are provided. Additionally, we validate our proposed approaches through simulations.
      414Scopus© Citations 28
  • Publication
    Security as a Service Platform Leveraging Multi-Access Edge Computing Infrastructure Provisions
    The mobile service platform envisaged by emerging IoT and 5G is guaranteeing gigabit-level bandwidth, ultra-low latency and ultra-high storage capacity for their subscribers. In spite of the variety of applications plausible with the envisaged technologies, security is a demanding objective that should be applied beyond the design stages. Thus, Security as a Service (SECaaS) is an initiative for a service model that enable mobile and IoT consumers with diverse security functions such as Intrusion Detection and Prevention (IDPaaS), Authentication (AaaS), and Secure Transmission Channel (STCaaS) as a Service. A well-equipped edge computing infrastructure is intrinsic to achieve this goal. The emerging Multi-Access Edge Computing (MEC) paradigm standardized by the ETSI is excelling among other edge computing flavours due to its well-defined structure and protocols. Thus, in our directive, we intend to utilize MEC as the edge computing platform to launch the SECaaS functions. Though, the actual development of a MEC infrastructure is highly dependent on the integration of virtualization technologies to enable dynamic creation, the deployment, and the detachment of virtualized entities that should feature interoperability to cater the heterogeneous IoT devices and services. To that extent, this work is proposing a security service architecture that offers these SECaaS services. Further, we validate our proposed architecture through the development of a virtualized infrastructure that integrates lightweight and hypervisor-based virtualization technologies. Our experiments prove the plausibility of launching multiple security instances on the developed prototype edge platform.
      482Scopus© Citations 23