Now showing 1 - 1 of 1
  • Publication
    Long-circulating magnetoliposomes as surrogates for assessing pancreatic tumour permeability and nanoparticle deposition
    Nanocarriers are candidates for cancer chemotherapy delivery, with growing numbers of clinically-approved nano-liposomal formulations such as Doxil® and Onivyde® (liposomal doxorubicin and irinotecan) providing proof-of-concept. However, their complex biodistribution and the varying susceptibility of individual patient tumours to nanoparticle deposition remains a clinical challenge. Here we describe the preparation, characterisation, and biological evaluation of phospholipidic structures containing solid magnetic cores (SMLs) as an MRI-trackable surrogate that could aid in the clinical development and deployment of nano-liposomal formulations. Through the sequential assembly of size-defined iron oxide nanoparticle clusters with a stabilizing anionic phospholipid inner monolayer and an outer monolayer of independently-selectable composition, SMLs can mimic physiologically a wide range of nano-liposomal carrier compositions. In patient-derived xenograft models of pancreatic adenocarcinoma, similar tumour deposition of SML and their nano-liposomal counterparts of identical bilayer composition was observed in vivo, both at the tissue level (fluorescence intensities of 1.5 × 108 ± 1.8 × 107 and 1.2 × 108 ± 6.3 × 107, respectively; ns, 99% confidence interval) and non-invasively using MR imaging. We observed superior capabilities of SML as a surrogate for nano-liposomal formulations as compared to other clinically-approved iron oxide nano-formulations (ferumoxytol). In combination with diagnostic and therapeutic imaging tools, SMLs have high clinical translational potential to predict nano-liposomal drug carrier deposition and could assist in stratifying patients into treatment regimens that promote optimal tumour deposition of nanoparticulate chemotherapy carriers. Statement of significance: Solid magnetoliposomes (SMLs) with compositions resembling that of FDA-approved agents such as Doxil® and Onivyde® offer potential application as non-invasive MRI stratification agents to assess extent of tumour deposition of nano-liposomal therapeutics prior to administration. In animals with pancreatic adenocarcinoma (PDAC), SML-PEG exhibited (i) tumour deposition comparable to liposomes of the same composition; (ii) extended circulation times, with continued tumour deposition up to 24 hours post-injection; and (iii) MRI capabilities to determine tumour deposition up to 1 week post-injection, and confirmation of patient-to-patient variation in nanoparticulate deposition in tumours. Hence SMLs with controlled formulation are a step towards non-invasive MRI stratification approaches for patients, enabled by evaluation of the extent of deposition in tumours prior to administration of nano-liposomal therapeutics.
      5Scopus© Citations 4