Now showing 1 - 10 of 18
  • Publication
    Use of body worn sensors to predict ankle injuries using screening tools
    Background The Single Leg Squat (SLS) is an important screening tool in predicting those at an increased risk of ankle injuries as it relates to landing, running and cutting tasks. However, clinical analysis of this exercise is often completed visually with relatively poor intra-rater reliability. More detailed analysis of SLS completed in biomechanics laboratories is time-consuming and costly. Recent developments in body worn sensors may allow for quick assessments that produce valid and reliable data.Objective To explore a model for leveraging data obtained from wearable sensors to aid in ankle injury risk factor screening.Design A single case study design, with qualitative analysis of quantitative data.Setting University research laboratory.Participants A single participant (female, age = 24 years; height = 158 cm, body mass = 47 kg) was chosen. The participant was familiar with the SLS exercise and had completed it as part of their exercise routine for the past year.Interventions The participant completed 10 left SLS repetitions. These were recorded using the sensors and repetitions where the participant lost balance were noted. Loss of balance was defined as when the subject was unable to maintain single leg stance during the downward or upward phase of the movement and placed their other foot on the ground for support.Main outcome measurements Visual analysis showed signals from the wearable sensors (accelerometer Y and gyroscope Z) were altered when the participant lost their balance compared to signals obtained when the participant maintained balance.Conclusions These preliminary results indicate that body worn sensors may be able to automatize screening tools such as the SLS. An automated system for characterising and quantifying deviations from good form could be developed to aid clinicians and researchers. Such a system would provide objective and reliable data to clinicians and allow researchers to analyse movements quicker and in a more naturalistic setting.
      352
  • Publication
    Mobile App to Streamline the Development of Wearable Sensor-Based Exercise Biofeedback Systems: System Development and Evaluation
    Background: Biofeedback systems that use inertial measurement units (IMUs) have been shown recently to have the ability toobjectively assess exercise technique. However, there are a number of challenges in developing such systems; vast amounts ofIMU exercise datasets must be collected and manually labeled for each exercise variation, and naturally occurring techniquedeviations may not be well detected. One method of combatting these issues is through the development of personalized exercisetechnique classifiers.Objective: We aimed to create a tablet app for physiotherapists and personal trainers that would automate the development ofpersonalized multiple and single IMU-based exercise biofeedback systems for their clients. We also sought to complete apreliminary investigation of the accuracy of such individualized systems in a real-world evaluation.Methods: A tablet app was developed that automates the key steps in exercise technique classifier creation through synchronizingvideo and IMU data collection, automatic signal processing, data segmentation, data labeling of segmented videos by an exerciseprofessional, automatic feature computation, and classifier creation. Using a personalized single IMU-based classification system,15 volunteers (12 males, 3 females, age: 23.8 [standard deviation, SD 1.8] years, height: 1.79 [SD 0.07] m, body mass: 78.4 [SD9.6] kg) then completed 4 lower limb compound exercises. The real-world accuracy of the systems was evaluated.Results: The tablet app successfully automated the process of creating individualized exercise biofeedback systems. Thepersonalized systems achieved 89.50% (1074/1200) accuracy, with 90.00% (540/600) sensitivity and 89.00% (534/600) specificityfor assessing aberrant and acceptable technique with a single IMU positioned on the left thigh.Conclusions: A tablet app was developed that automates the process required to create a personalized exercise techniqueclassification system. This tool can be applied to any cyclical, repetitive exercise. The personalized classification model displayedexcellent system accuracy even when assessing acute deviations in compound exercises with a single IMU.
      457
  • Publication
    Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs
    BACKGROUND: The barbell squat is a popularly used lower limb rehabilitation exercise. It is also an integral exercise in injury risk screening protocols. To date athlete/patient technique has been assessed using expensive laboratory equipment or subjective clinical judgement; both of which are not without shortcomings. Inertial measurement units (IMUs) may offer a low cost solution for the objective evaluation of athlete/patient technique. However, it is not yet known if global classification techniques are effective in identifying naturally occurring, minor deviations in barbell squat technique.OBJECTIVES: The aims of this study were to: (a) determine if in combination or in isolation, IMUs positioned on the lumbar spine, thigh and shank are capable of distinguishing between acceptable and aberrant barbell squat technique; (b) determine the capabilities of an IMU system at identifying specific natural deviations from acceptable barbell squat technique; and (c) compare a personalised (N=1) classifier to a global classifier in identifying the above. METHODS: Fifty-five healthy volunteers (37 males, 18 females, age = 24.21 +/- 5.25 years, height = 1.75 +/- 0.1 m, body mass = 75.09 +/- 13.56 kg) participated in the study. All participants performed a barbell squat 3-repetition maximum max strength test. IMUs were positioned on participants' lumbar spine, both shanks and both thighs; these were utilized to record tri-axial accelerometer, gyroscope and magnetometer data during all repetitions of the barbell squat exercise. Technique was assessed and labelled by a Chartered Physiotherapist using an evaluation framework. Features were extracted from the labelled IMU data. These features were used to train and evaluate both global and personalised random forests classifiers.RESULTS: Global classification techniques produced poor accuracy (AC), sensitivity (SE) and specificity (SP) scores in binary classification even with a 5 IMU set-up in both binary (AC: 64%, SE: 70%, SP: 28%) and multi-class classification (AC: 59%, SE: 24%, SP: 84%). However, utilising personalised classification techniques even with a single IMU positioned on the left thigh produced good binary classification scores (AC: 81%, SE: 81%, SP: 84%) and moderate-to-good multi-class scores (AC: 69%, SE: 70%, SP: 89%).CONCLUSIONS: There are a number of challenges in developing global classification exercise technique evaluation systems for rehabilitation exercises such as the barbell squat. Building large, balanced data sets to train such systems is difficult and time intensive. Minor, naturally occurring deviations may not be detected utilising global classification approaches. Personalised classification approaches allow for higher accuracy and greater system efficiency for end-users in detecting naturally occurring barbell squat technique deviations. Applying this approach also allows for a single-IMU set up to achieve similar accuracy to a multi-IMU setup, which reduces total system cost and maximises system usability.
      566Scopus© Citations 13
  • Publication
    Evaluating Performance of the Lunge Exercise with Multiple and Individual Inertial Measurement Units
    The lunge is an important component of lower limb rehabilitation, strengthening and injury risk screening. Completing the movement incorrectly alters muscle activation and increases stress on knee, hip and ankle joints. This study sought to investigate whether IMUs are capable of discriminating between correct and incorrect performance of the lunge. Eighty volunteers (57 males, 23 females, age: 24.68± 4.91 years, height: 1.75± 0.094m, body mass: 76.01±13.29kg) were fitted with five IMUs positioned on the lumbar spine, thighs and shanks. They then performed the lunge exercise with correct form and 11 specific deviations from acceptable form. Features were extracted from the labelled sensor data and used to train and evaluate random-forests classifiers. The system achieved 83% accuracy, 62% sensitivity and 90% specificity in binary classification with a single sensor placed on the right thigh and 90% accuracy, 80% sensitivity and 92% specificity using five IMUs. This multi-sensor set up can detect specific deviations with 70% accuracy. These results indicate that a single IMU has the potential to differentiate between correct and incorrect lunge form and using multiple IMUs adds the possibility of identifying specific deviations a user is making when completing the lunge.
      1775
  • Publication
    Inter-session test-retest reliability of the quantified Y balance test
    The Y Balance test is the most common dynamic balance assessment used in clinical practice and research. However, the traditional measure of performance, the reach distance, fails to provide detailed information pertaining to the control of balance during the reach task. Recent research has demonstrated that a single wearable inertial sensor can capture detailed information pertaining to balance performance during the Y balance test, not captured by the traditional reach distances. To date, no research has been conducted investigating the inter-session test-retest reliability of the inertial sensor instrumented YBT. Thirty -two young healthy adults, aged between 18-40 were recruited as part of this study. Participants completed the quantified YBT protocol during two testing sessions, separated by 7-10 days. The findings from this study demonstrated that 26/36 (anterior), 31/36 (posteromedial) and 33/36 (posterolateral) quantified variables demonstrated good-excellent intra-session test-retest reliability. These findings suggest that the inertial sensor quantified YBT can provide a reliable measure of dynamic balance performance. Further research is required to investigate the capability of the quantified YBT to identify individuals at risk of injury/ disease and track recovery/ response to intervention.
      684Scopus© Citations 7
  • Publication
    A Wearable Sensor-Based Exercise Biofeedback System: Mixed Methods Evaluation of Formulift
    Background: Formulift is a newly developed mobile health (mHealth) app that connects to a single inertial measurement unit (IMU) worn on the left thigh. The IMU captures users movements as they exercise, and the app analyzes the data to count repetitions in real time and classify users exercise technique. The app also offers feedback and guidance to users on exercising safely and effectively. Objective: The aim of this study was to assess the Formulift system with three different and realistic types of potential users (beginner gym-goers, experienced gym-goers, and qualified strength and conditioning [S&C] coaches) under a number of categories: (1) usability, (2) functionality, (3) the perceived impact of the system, and (4) the subjective quality of the system. It was also desired to discover suggestions for future improvements to the system. Methods: A total of 15 healthy volunteers participated (12 males; 3 females; age: 23.8 years [SD 1.80]; height: 1.79 m [SD0.07], body mass: 78.4 kg [SD 9.6]). Five participants were beginner gym-goers, 5 were experienced gym-goers, and 5 were qualified and practicing S&C coaches. IMU data were first collected from each participant to create individualized exercise classifiers for them. They then completed a number of non exercise-related tasks with the app. Following this, a workout was completed using the system, involving squats, dead lifts, lunges, and single-leg squats. Participants were then interviewed about their user experience and completed the System Usability Scale (SUS) and the user version of the Mobile Application Rating Scale (uMARS). Thematic analysis was completed on all interview transcripts, and survey results were analyzed. Results: Qualitative and quantitative analysis found the system has good to excellent usability. The system achieved a mean (SD) SUS usability score of 79.2 (8.8). Functionality was also deemed to be good, with many users reporting positively on the systems repetition counting, technique classification, and feedback. A number of bugs were found, and other suggested changes to the system were also made. The overall subjective quality of the app was good, with a median star rating of 4 out of 5 (interquartile range, IQR: 3-5). Participants also reported that the system would aid their technique, provide motivation, reassure them, and help them avoid injury. Conclusions: This study demonstrated an overall positive evaluation of Formulift in the categories of usability, functionality, perceived impact, and subjective quality. Users also suggested a number of changes for future iterations of the system. These findings are the first of their kind and show great promise for wearable sensor-based exercise biofeedback systems.
      485Scopus© Citations 19
  • Publication
    Interpretable Time Series Classification using Linear Models and Multi-resolution Multi-domain Symbolic Representations
    The time series classification literature has expanded rapidly over the last decade, with many new classification approaches published each year. Prior research has mostly focused on improving the accuracy and efficiency of classifiers, with interpretability being somewhat neglected. This aspect of classifiers has become critical for many application domains and the introduction of the EU GDPR legislation in 2018 is likely to further emphasize the importance of interpretable learning algorithms. Currently, state-of-the-art classification accuracy is achieved with very complex models based on large ensembles (COTE) or deep neural networks (FCN). These approaches are not efficient with regard to either time or space, are difficult to interpret and cannot be applied to variable-length time series, requiring pre-processing of the original series to a set fixed-length. In this paper we propose new time series classification algorithms to address these gaps. Our approach is based on symbolic representations of time series, efficient sequence mining algorithms and linear classification models. Our linear models are as accurate as deep learning models but are more efficient regarding running time and memory, can work with variable-length time series and can be interpreted by highlighting the discriminative symbolic features on the original time series. We advance the state-of-the-art in time series classification by proposing new algorithms built using the following three key ideas: (1) Multiple resolutions of symbolic representations: we combine symbolic representations obtained using different parameters, rather than one fixed representation (e.g., multiple SAX representations); (2) Multiple domain representations: we combine symbolic representations in time (e.g., SAX) and frequency (e.g., SFA) domains, to be more robust across problem types; (3) Efficient navigation in a huge symbolic-words space: we extend a symbolic sequence classifier (SEQL) to work with multiple symbolic representations and use its greedy feature selection strategy to effectively filter the best features for each representation. We show that our multi-resolution multi-domain linear classifier (mtSS-SEQL+LR) achieves a similar accuracy to the state-of-the-art COTE ensemble, and to recent deep learning methods (FCN, ResNet), but uses a fraction of the time and memory required by either COTE or deep models. To further analyse the interpretability of our classifier, we present a case study on a human motion dataset collected by the authors. We discuss the accuracy, efficiency and interpretability of our proposed algorithms and release all the results, source code and data to encourage reproducibility.
      1147Scopus© Citations 78
  • Publication
    Capturing concussion related changes in dynamic balance using the quantified Y Balance Test - a case series of six elite rugby union players
    This paper investigates design considerations and challenges of integrating on-chip antennas in nanoscale CMOS technology at millimeter-wave (mm-wave) to achieve a compact front-end receiver for 5G communication systems. Solutions to overcome these challenges are offered and realized in digital 28-nm CMOS. A monolithic on-chip antenna is designed and optimized in the presence of rigorous metal density rules and other back-end-of-the-line (BEoL) challenges of the nanoscale technology. The proposed antenna structure further exploits ground metallization on a PCB board acting as a reflector to increase its radiation efficiency and power gain by 37.3% and 9.8 dB, respectively, while decreasing the silicon area up to 30% compared to the previous works. The antenna is directly matched to a two-stage low noise amplifier (LNA) in a synergetic way as to give rise to an active integrated antenna (AIA) in order to avoid additional matching or interconnect losses. The LNA is followed by a double-balanced folded Gilbert cell mixer, which produces a lower intermediate frequency (IF) such that no probing is required for measurements. The measured total gain of the AIA is 14 dBi. Its total core area is 0.83 mm 2 while the total chip area, including the pad frame, is 1.55 × 0.85 mm 2.
      831Scopus© Citations 5
  • Publication
    Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units
    Background: The single leg squat (SLS) is a common lower limb rehabilitation exercise. It is also frequently used as an evaluative exercise to screen for an increased risk of lower limb injury. To date athlete / patient SLS technique has been assessed using expensive laboratory equipment or subjective clinical judgement; both of which are not without shortcomings. Inertial measurement units (IMUs) may offer a low cost solution for the objective evaluation of athlete / patient SLS technique. Objectives: The aims of this study were to determine if in combination or in isolation IMUs positioned on the lumbar spine, thigh and shank are capable of: (a) distinguishing between acceptable and aberrant SLS technique; (b) identifying specific deviations from acceptable SLS technique. Methods: Eighty-three healthy volunteers participated (60 males, 23 females, age: 24.68 + / − 4.91 years, height: 1.75 + / − 0.09 m, body mass: 76.01 + / − 13.29 kg). All participants performed 10 SLSs on their left leg. IMUs were positioned on participants’ lumbar spine, left shank and left thigh. These were utilized to record tri-axial accelerometer, gyroscope and magnetometer data during all repetitions of the SLS. SLS technique was labelled by a Chartered Physiotherapist using an evaluation framework. Features were extracted from the labelled sensor data. These features were used to train and evaluate a variety of random-forests classifiers that assessed SLS technique. Results: A three IMU system was moderately successful in detecting the overall quality of SLS performance (77 % accuracy, 77 % sensitivity and 78 % specificity). A single IMU worn on the shank can complete the same analysis with 76 % accuracy, 75 % sensitivity and 76 % specificity. Single sensors also produce competitive classification scores relative to multi-sensor systems in identifying specific deviations from acceptable SLS technique. Conclusions: A single IMU positioned on the shank can differentiate between acceptable and aberrant SLS technique with moderate levels of accuracy. It can also capably identify specific deviations from optimal SLS performance. IMUs may offer a low cost solution for the objective evaluation of SLS performance. Additionally, the classifiers described may provide useful input to an exercise biofeedback application.
      931Scopus© Citations 38
  • Publication
    Leveraging IMU Data for Accurate Exercise Performance Classification and Musculoskeletal Injury Risk Screening
    Inertial measurement units (IMUs) are becoming increasingly prevalent as a method for low cost and portable biomechanical analysis. However, to date they have not tended to be accepted into routine clinical practice. This is often due to the disconnect between translating the data collected by the sensors into meaningful and actionable information for end users. This paper outlines the work completed by our group in attempting to achieve this. We discuss the conceptual framework involved in our work, the methodological approach taken in analysing sensor signals and discuss possible application models. The work completed by our group indicates that IMU based systems have the potential to bridge the gap between laboratory and clinical movement analysis. Future work will focus on collecting a diverse range of movement data and using more sophisticated data analysis techniques to refine systems.
      835Scopus© Citations 27