Now showing 1 - 10 of 20
  • Publication
    COVID-19 epidemiological parameters summary document
    In response to the coronavirus (COVID-19) outbreak, the Irish Epidemiological Modelling Advisory Group (IEMAG) for COVID-19 was established to assist the Irish National Public Health Emergency Team (NPHET) in their decision-making during the pandemic. A subcommittee from IEMAG (the epidemiological parameters team) was tasked with researching the various parameters, leading to the development of a series of synthesis documents relevant to the parameterisation of a COVID-19 transmission model for Ireland. These parameters include: • R0/R • Latent period & relative importance of pre-symptomatic period • Incubation period • Generation time & serial interval • Proportion of infected who are asymptomatic, by age • Length of infectious period in asymptomatic people and in symptomatic people who do not isolate • Time from onset of symptoms to diagnosis/test results and to hospitalisation • Length of hospital stay and admission to ICUs • Relative infectiousness of asymptomatic versus symptomatic infected people. The current document presents an up-to-date summary of these synthesis documents. A further synthesis document on age-related susceptibility and age-related infectiousness is in preparation.
      235
  • Publication
    Potential Application of SARS-CoV-2 Rapid Antigen Diagnostic Tests for the Detection of Infectious Individuals Attending Mass Gatherings – A Simulation Study
    Rapid Antigen Diagnostic Tests (RADTs) for the detection of SARS-CoV-2 offer advantages in that they are cheaper and faster than currently used PCR tests but have reduced sensitivity and specificity. One potential application of RADTs is to facilitate gatherings of individuals, through testing of attendees at the point of, or immediately prior to entry at a venue. Understanding the baseline risk in the tested population is of particular importance when evaluating the utility of applying diagnostic tests for screening purposes. We used incidence data from January and from July-August 2021, periods of relatively high and low levels of infection, to estimate the prevalence of infectious individuals in the community at particular time points and simulated mass gatherings by sampling froma series of age cohorts. Nine different illustrative scenarios were simulated, small (n = 100), medium (n = 1,000) and large (n = 10,000) gatherings each with 3 possible age constructs: mostly younger, mostly older or a gathering with equal numbers from each age cohort. For each scenario, we estimated the prevalence of infectious attendees, then simulated the likely number of positive and negative test results, the proportion of cases detected and the corresponding positive and negative predictive values, and the cost per case identified. Our findings suggest that for each reported case on a given day, there are likely to be 13.8 additional infectious individuals also present in the community. Prevalence ranged from 0.26% for “mostly older” events in July-August, to 2.6% for “mostly younger” events in January. For small events (100 attendees) the expected number of infectious attendees ranged from <1 across all age constructs of attendees in July-August, to 2.6 for “mostly younger” events in January. For large events (10,000 attendees) the expected number of infectious attendees ranged from 27 (95% confidence intervals 12 to 45) for mostly older events in July-August, to 267 (95% confidence intervals 134 to 436) infectious attendees for mostly younger attendees in January. Given rapid changes in SARS-CoV-2 incidence over time, we developed an RShiny app to allow users to run updated simulations for specific events.
      149
  • Publication
    Modeling of alternative testing strategies to demonstrate freedom from Mycobacterium avium ssp. paratuberculosis infection in test-negative dairy herds in the Republic of Ireland
    In light of the various adverse effects of Johne's disease on animal productivity and the debate on the role of its causative organism, Mycobacterium avium ssp. paratuberculosis, in the etiology of Crohn's disease, major dairy-producing countries around the world have implemented national control programs aimed at reducing the prevalence of this infection in cattle. A pilot control program was initiated in Ireland in 2013, with a key objective to provide farmers with test-negative dairy herds with tools and knowledge to increase their confidence of freedom over time. The aim of this study was to estimate the confidence of freedom obtained in test-negative Irish dairy herds over time with various sampling scenarios and to evaluate the cost-effectiveness of alternative scenarios for achieving an acceptable level of confidence of freedom in herds with no evidence of infection. A stochastic model was developed to simulate repeated annual testing of individual animals using ELISA and confirmatory assays over a period of 20 yr. Two scenarios modeled the current herd-screening options, whereas 14 alternative scenarios explored the effect of varying parameters from the current testing strategies, such as the frequency of testing, the eligibility criteria for selecting animals, the type of assay, the probability of introduction, and the assay sensitivity. Results showed that the current testing strategy with milk twice a year or serum once a year in all animals over 2 yr old provided the highest annual herd sensitivity, with a median value of 55%. Although the median confidence of freedom increased over time for all scenarios, the time required to reach 90 and 95% confidence of freedom was highly variable between scenarios. Under the testing scenario where serum tests were used once a year, the confidence of freedom reached 90% after 4 yr and 95% after 7 yr of testing. Some of the alternative scenarios achieved an acceptable level of confidence of freedom in a reasonable timeframe and at lesser cost than the current testing strategies. The results of this work are used to provide recommendations for the next phases of the program.
      357Scopus© Citations 16
  • Publication
    Relative infectiousness of asymptomatic SARS-CoV-2 infected persons compared with symptomatic individuals: a rapid scoping review
    Objectives The aim of this study was to determine the relative infectiousness of asymptomatic SARS-CoV-2 infected persons compared with symptomatic individuals based on a scoping review of available literature. Design Rapid scoping review of peer-reviewed literature from 1 January to 5 December 2020 using the LitCovid database and the Cochrane library. Setting International studies on the infectiousness of individuals infected with SARS-CoV-2. Participants Studies were selected for inclusion if they defined asymptomatics as a separate cohort distinct from presymptomatics and if they provided a quantitative measure of the infectiousness of asymptomatics relative to symptomatics. Primary outcome measures PCR result (PCR studies), the rate of infection (mathematical modelling studies) and secondary attack rate (contact tracing studies) - in each case from asymptomatic in comparison with symptomatic individuals. Results There are only a limited number of published studies that report estimates of relative infectiousness of asymptomatic compared with symptomatic individuals. 12 studies were included after the screening process. Significant differences exist in the definition of infectiousness. PCR studies in general show no difference in shedding levels between symptomatic and asymptomatic individuals; however, the number of study subjects is generally limited. Two modelling studies estimate relative infectiousness to be 0.43 and 0.57, but both of these were more reflective of the infectiousness of undocumented rather than asymptomatic cases. The results from contact tracing studies include estimates of relative infectiousness of 0, but with insufficient evidence to conclude that it is significantly different from 1. Conclusions There is considerable heterogeneity in estimates of relative infectiousness highlighting the need for further investigation of this important parameter. It is not possible to provide any conclusive estimate of relative infectiousness, as the estimates from the reviewed studies varied between 0 and 1.
      286Scopus© Citations 29
  • Publication
    Presymptomatic transmission of SARS-CoV-2 infection: a secondary analysis using published data
    Objective To estimate the proportion of presymptomatic transmission of SARS-CoV-2 infection that can occur, and the timing of transmission relative to symptom onset.Setting/design Secondary analysis of international published data.Data sources Meta-analysis of COVID-19 incubation period and a rapid review of serial interval and generation time, which are published separately.Participants Data from China, the Islamic Republic of Iran, Italy, Republic of Korea, Singapore and Vietnam from December 2019 to May 2020.Methods Simulations were generated of incubation period and of serial interval or generation time. From these, transmission times relative to symptom onset, and the proportion of presymptomatic transmission, were estimated.Outcome measures Transmission time of SARS-CoV-2 relative to symptom onset and proportion of presymptomatic transmission.Results Based on 18 serial interval/generation time estimates from 15 papers, mean transmission time relative to symptom onset ranged from −2.6 (95% CI −3.0 to –2.1) days before infector symptom onset to 1.4 (95% CI 1.0 to 1.8) days after symptom onset. The proportion of presymptomatic transmission ranged from 45.9% (95% CI 42.9% to 49.0%) to 69.1% (95% CI 66.2% to 71.9%).Conclusions There is substantial potential for presymptomatic transmission of SARS-CoV-2 across a range of different contexts. This highlights the need for rapid case detection, contact tracing and quarantine. The transmission patterns that we report reflect the combination of biological infectiousness and transmission opportunities which vary according to context.
      341Scopus© Citations 27
  • Publication
    Incubation period of COVID-19: a rapid systematic review and meta-analysis of observational research
    Objectives: The aim of this study was to conduct a rapid systematic review and meta-analysis of estimates of the incubation period of COVID-19. Design: Rapid systematic review and meta-analysis of observational research. Setting: International studies on incubation period of COVID-19. Participants: Searches were carried out in PubMed, Google Scholar, Embase, Cochrane Library as well as the preprint servers MedRxiv and BioRxiv. Studies were selected for meta-analysis if they reported either the parameters and CIs of the distributions fit to the data, or sufficient information to facilitate calculation of those values. After initial eligibility screening, 24 studies were selected for initial review, nine of these were shortlisted for meta-analysis. Final estimates are from meta-analysis of eight studies. Primary outcome measures: Parameters of a lognormal distribution of incubation periods. Results: The incubation period distribution may be modelled with a lognormal distribution with pooled mu and sigma parameters (95% CIs) of 1.63 (95% CI 1.51 to 1.75) and 0.50 (95% CI 0.46 to 0.55), respectively. The corresponding mean (95% CIs) was 5.8 (95% CI 5.0 to 6.7) days. It should be noted that uncertainty increases towards the tail of the distribution: the pooled parameter estimates (95% CIs) resulted in a median incubation period of 5.1 (95% CI 4.5 to 5.8) days, whereas the 95th percentile was 11.7 (95% CI 9.7 to 14.2) days. Conclusions: The choice of which parameter values are adopted will depend on how the information is used, the associated risks and the perceived consequences of decisions to be taken. These recommendations will need to be revisited once further relevant information becomes available. Accordingly, we present an R Shiny app that facilitates updating these estimates as new data become available.
      413Scopus© Citations 302
  • Publication
    The prevalence, temporal and spatial trends in bulk tank equivalent milk fat depression in Irish milk recorded herds.
    Milk fat is important in terms of economic value and in its potential to provide information concerning cow diet and health. Under current milk payment schemes in Ireland farmer income is directly linked to milk fat production.
      461Scopus© Citations 9
  • Publication
    Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases
    Objectives. Our objective was to review the literature on the inferred duration of the infectious period of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and provide an overview of the variation depending on the methodological approach. Design. Rapid scoping review. Literature review with fixed search terms, up to 1 April 2020. Central tendency and variation of the parameter estimates for infectious period in (A) asymptomatic and (B) symptomatic cases from (1) virological studies (repeated testing), (2) tracing studies and (3) modelling studies were gathered. Narrative review of viral dynamics. Information sources. Search strategies developed and the following searched: PubMed, Google Scholar, MedRxiv and BioRxiv. Additionally, the Health Information Quality Authority (Ireland) viral load synthesis was used, which screened literature from PubMed, Embase, ScienceDirect, NHS evidence, Cochrane, medRxiv and bioRxiv, and HRB open databases. Results. There was substantial variation in the estimates, and how infectious period was inferred. One study provided approximate median infectious period for asymptomatic cases of 6.5–9.5 days. Median presymptomatic infectious period across studies varied over <1–4 days. Estimated mean time from symptom onset to two negative RT-PCR tests was 13.4 days (95% CI 10.9 to 15.8) but was shorter when studies included children or less severe cases. Estimated mean duration from symptom onset to hospital discharge or death (potential maximal infectious period) was 18.1 days (95% CI 15.1 to 21.0); time to discharge was on average 4 days shorter than time to death. Viral dynamic data and model infectious parameters were often shorter than repeated diagnostic data. Conclusions. There are limitations of inferring infectiousness from repeated diagnosis, viral loads and viral replication data alone and also potential patient recall bias relevant to estimating exposure and symptom onset times. Despite this, available data provide a preliminary evidence base to inform models of central tendency for key parameters and variation for exploring parameter space and sensitivity analysis.
      374Scopus© Citations 195
  • Publication
    Development of a syndromic surveillance system for Irish dairy cattle using milk recording data
    In the last decade and a half, emerging vector-borne diseases have become a substantial threat to cattle across Europe. To mitigate the impact of the emergence of new diseases, outbreaks must be detected early. However, the clinical signs associated with many diseases may be nonspecific. Furthermore, there is often a delay in the development of new diagnostic tests for novel pathogens which limits the ability to detect emerging disease in the initial stages. Syndromic Surveillance has been proposed as an additional surveillance method that could augment traditional methods by detecting aberrations in non-specific disease indicators. The aim of this study was to develop a syndromic surveillance system for Irish dairy herds based on routinely collected milk recording and meteorological data. We sought to determine whether the system would have detected the 2012 Schmallenberg virus (SBV) incursion into Ireland earlier than conventional surveillance methods. Using 7,743,138 milk recordings from 730,724 cows in 7037 herds between 2007 and 2012, linear mixed-effects models were developed to predict milk yield and alarms generated with temporally clustered deviations from predicted values. Additionally, hotspot spatial analyses were conducted at corresponding time points. Using a range of thresholds, our model generated alarms throughout September 2012, between 4 and 6 weeks prior to the first laboratory confirmation of SBV in Ireland. This system for monitoring milk yield represents both a potentially useful tool for early detection of disease, and a valuable foundation for developing similar tools using other metrics.
      225Scopus© Citations 1
  • Publication
    Johne’s disease in Irish dairy herds: considerations for an effective national control programme
    The Irish dairy industry has established a reputation for the production of safe and healthy dairy products and is seeking to further expand its export market for high value dairy products. To support its reputation, stakeholders aim to control Johne’s disease. To assist decision-makers determine the most appropriate design for an Irish programme, a narrative review of the scientific literature on the epidemiology of Johne’s disease, and selected control programmes throughout the world was undertaken. Two modelling studies specifically commissioned by Animal Health Ireland to assess testing methods used to demonstrate confidence of freedom in herds and to evaluate a range of possible surveillance strategies provided additional information. The majority of control programmes tend to be voluntary, because of the unique epidemiology of Johne’s disease and limited support for traditional regulatory approaches. While acknowledging that test performance and sub-clinical sero-negative shedders contributes to the spread of infection, a range of socio-political issues also exist that influence programme activities. The paper provides a rationale for the inclusion of a Veterinary Risk Assessment and Management Plan (VRAMP), including voluntary whole herd testing to identify infected herds and to support assurance-based trading through repeated rounds of negative testing, national surveillance for herd-level case-detection, and improved understanding of biosecurity management practices. Identification and promotion of drivers for industry and producer engagement in Ireland is likely to guide the future evolution of the Irish Johne’s Control Programme (IJCP) and further enhance its success. The provision of training, education and extension activities may encourage farmers to adopt relevant farm management practices and help them recognize that they are ultimately responsible for their herd’s health and biosecurity.
      199Scopus© Citations 5