Now showing 1 - 10 of 27
  • Publication
    Implicit and explicit solvent models for modelling a bifunctional arene ruthenium hydrogen-storage catalyst: a classical and ab initio molecular simulation study
    Classical and ab initio, density functional theory- and semiempirical-based molecular simulation, including molecular dynamics, have been carried out to compare and contrast the effect of explicit and implicit solvation representation of tetrahydrofuran (THF) solvent on the structural, energetic, and dynamical properties of a novel bifunctional arene ruthenium catalyst embedded therein. Particular scrutiny was afforded to hydrogen-bonding and energetic interactions with the THF liquid. It was found that the presence of explicit THF solvent molecules is required to capture an accurate picture of the catalyst's structural properties, particularly in view of the importance of hydrogen bonding with the surrounding THF molecules. This has implications for accurate modeling of the reactivity of the catalyst.
    Scopus© Citations 6  393
  • Publication
    Carbon-Doped TiO2 and Carbon, Tungsten-Codoped TiO2 through Sol-Gel Processes in the Presence of Melamine Borate: Reflections through Photocatalysis
    A series of C-doped, W-doped, and C,Wcodoped TiO2 samples have been prepared using modified sol-gel techniques. Reproducible inexpensive C-doping arises from the presence of melamine borate in a sol-gel mixture, whereas W-doping is from the addition of tungstic acid to the sol. The materials have been characterized using elemental analysis, N2 physisorption (BET), thermogravimetric analysis, X-ray diffraction, Raman, X-ray photoelectron, UV-vis spectroscopies, and photocatalytic activity measurements. Doping C and W independently results in an increased absorbance in the visible region of the spectrum with a synergistic effect in increased absorbance when both elements are codoped. The increased visible-light absorbance of the W-doped or codoped materials is not reflected in photocatalytic activity. Visiblelight- induced photocatalytic activity of C-doped material was superior to that of an undoped catalyst, paving the way for its application under only visible-light irradiation conditions. A significant fraction of the spectral red shift commonly observed with doped catalysts might be due to the formation of color centers as a result of defects associated with oxygen vacancies, and bandgap-related narrowing or intragap localization of dopant levels are not the only factors responsible for enhanced visible-light absorption in doped photocatalysts. Furthermore, bandgap narrowing through increases in the energy of the valence band may actually decrease photo-oxidation activity through a curtailment of one route of oxidation.
    Scopus© Citations 116  1025
  • Publication
    Serendipity following attempts to prepare C-doped rutile TiO2
    Attempts to mimic the band gap narrowing seen in anatase TiO2 following C-doping of the lattice where the C arose from a melamine borate precursor were made in situations where the sol-gel mixture was directed towards rutile formation. The formed materials were characterised using XRD, BET, UV-Vis spectroscopy, XPS and TEM and their activities in promoting the photo-degradation of 4-chlorophenol were analysed. It was found that carbon was not doped into the lattice (in contrast to the situations where the sol-gel mixture was directed towards the precipitation of anatase TiO2). In spite of how common reports of the preparation of C-doped TiO2 using sol-gel processes have been, the presence of carbon dopant precursors in a crystallising sol does not necessarily result in the incorporation of C dopants within the final crystalline material, i.e. the nature of the condensing sol is also important. The presence of melamine borate did however increase the proportion of rutile in the final mixture (indeed in the presence of melamine borate the pure rutile phase was formed) and also resulted in materials with higher surface areas (as measured using BET). Furthermore, TEM has shown that rutile TiO2 condensed in the presence of melamine borate had a much more distinct rod-like shape than that condensed in its absence (the latter being more spherical in shape). These materials, notwithstanding the absence of any dopant effect, demonstrated enhanced photocatalytic activity when compared with analogous materials prepared in the absence of melamine borate and this effect is ascribed to both their relatively larger surface areas and their specific shape. Therefore, we have serendipitously come across a method for improving the performance of rutile photocatalysts while searching for a method to generate C-doped rutile TiO2.
      570Scopus© Citations 13
  • Publication
    Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates
    (American Institute of Physics, 2013-03-07) ; ;
    Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the diffusive properties of inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar from 200 K and up to 250-260 K. For mixed H2- THF systems in which there is single H2 occupation of the small cage (labelled ‘1SC 1LC’), we found that no H2 migration occurs. However, for more densely-filled H2-THF and pure- H2 systems, in which there is more than single H2 occupation in the small cage, there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K. The mean square displacements of the hydrogen molecules were fitted to a mathematical model consisting of an anomalous term and a Fickian component, and non-linear regression fitting was conducted to estimate long-time (inter-cage) diffusivities. An approximate Arrhenius temperature relationship for the diffusion coefficient was examined and a rough estimation of the hydrogen hopping energy barrier was calculated for each system.
    Scopus© Citations 48  443
  • Publication
    Activation of hematite nanorod arrays for photoelectrochemical water splitting
    Hematite nanorod arrays were activated through proper control of annealing conditions. The 100-fold improvement in photocurrent was correlated with increased absorption and Sn doping from the tin oxide coated glass substrate. The low onset potential is attributed to a reduction in surface defects, while the morphology is credited for promoting tin diffusion and facilitating electron transport.
      2210Scopus© Citations 154
  • Publication
    Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates
    (American Institute of Physics, 2012-01-24) ; ;
    Classical equilibrium molecular dynamics(MD) simulations have been performed to investigate dynamical properties of cage radial breathing modes and intra- and inter-cage hydrogen migration in both pure hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 0.05 kbar and up to 250K. For the mixed H2-THF system in which there is single H2 occupation of the small cage (labelled ‘1SC 1LC’), we find that no H2 migration occurs, and this is also the case for pure H2 hydrate with single small-cavity occupation and quadruple occupancy for large cages (dubbed ‘1SC 4LC’). However, for the more densely-filled H2-THF and pure- H2 systems, in which there is double H2 occupation in the small cage (dubbed ‘2SC 1LC’ and ‘2SC 4LC’, respectively), there is an onset of inter-cage H2 migration events from the small cages to neighbouring cavities at around 200 K, with an approximate Arrhenius temperature-dependence for the migration rate from 200 to 250 K. It was found that these ‘cage hopping’ events are facilitated by temporary openings of pentagonal small-cage faces with the relaxation and reformation of key stabilising hydrogen bonds during and following passage. The cages remain essentially intact up to 250 K, save for transient hydrogen bond weakening and reformation during and after inter-cage hydrogen diffusion events in the 200 to 250 K range. The ‘breathing modes’, or underlying frequencies governing the variation in the cavities’ radii, exhibit a certain overlap with THF rattling motion in the case of large cavities, while a there is some overlap of small cages’ radial breathing modes with lattice acoustic modes.
      593Scopus© Citations 34
  • Publication
    Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage
    Electronic-structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia-borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β-diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia-borane optimized for chemical hydrogen storage and allowing for low-energy dehydrogenation. The interaction of ammonia-borane, and related substituted ammonia-boranes, with a bifunctional η6-arene ruthenium catalyst and associated variants is investigated for dehydrogenation. Interestingly, in a number of cases, hydride-proton transfer from the substituted ammonia-borane to the catalyst undergoes a barrier-less process in the gas phase, with rapid formation of hydrogenated catalyst in the gas phase. Amongst the catalysts considered, N,N-difluoro ammonia-borane and N-phenyl ammonia-borane systems resulted in negative activation energy barriers. However, these types of ammonia-boranes are inherently thermodynamically unstable and undergo barrierless decay in the gas phase. Apart from N,N-difluoro ammonia-borane, the interaction between different types of catalyst and ammonia borane was modeled in the solvent phase, revealing free-energy barriers slightly higher than those in the gas phase. Amongst the various potential candidate Ru-complexes screened, few are found to differ in terms of efficiency for the dehydrogenation (rate-limiting) step. To model dehydrogenation more accurately, a selection of explicit protic solvent molecules was considered, with the goal of lowering energy barriers for H-H recombination. It was found that primary (1°), 2°, and 3° alcohols are the most suitable to enhance reaction rate. © 2014 Wiley Periodicals, Inc.
    Scopus© Citations 6  519
  • Publication
    Dynamical and energetic properties of hydrogen and hydrogen–tetrahydrofuran clathrate hydrates
    Classical equilibrium molecular dynamics (MD) simulations have been performed to investigate the dynamical and energetic properties in hydrogen and mixed hydrogen-tetrahydrofuran sII hydrates at 30 and 200K and 0.05 kbar, and also at intermediate temperatures, using SPC/E and TIP4P-2005 water models. The potential model is found to have a large impact on overall density, with the TIP4P-2005 systems being on average 1 % more dense than their SPC/E counterparts, due to the greater guest-host interaction energy. For the lightly-filled mixed H2-THF system, in which there is single H2 occupation of the small cage (1s1l), we find that the largest contribution to the interaction energy of both types of guest is the van der Waals component with the surrounding water molecules in the constituent cavities. For the more densely-filled mixed H2-THF system, in which there is double H2 occupation in the small cage (2s1l), we find that there is no dominant component (i.e., van der Waals or Coulombic) in the H2 interaction energy with the rest of the system, but for the THF molecules, the dominant contribution is again the van der Waals interaction with the surrounding cage-water molecules; again, the Coulombic component increases in importance with increasing temperature. The lightly-filled pure H2 hydrate (1s4l) system exhibits a similar pattern vis-à-vis the H2 interaction energy as for the lightly-filled mixed H2-THF system, and for the more densely-filled pure H2 system (2s4l), there is no dominant component of interaction energy, due to the multiple occupancy of the cavities. By consideration of Kubic harmonics, there is some evidence of preferential alignment of the THF molecules, particularly at 200 K; this was found to arise at higher temperatures due to transient hydrogen bonding of the oxygen atom in THF molecules with the surrounding cage-water molecules.
      519Scopus© Citations 21
  • Publication
    Photo-active and dynamical properties of hematite (Fe2O3)-water interfaces: An experimental and theoretical study
    The dynamical properties of physically and chemically adsorbed water molecules at pristine hematite-(001) surfaces have been studied by means of equilibrium Born–Oppenheimer molecular dynamics (BOMD) in the NVT ensemble at 298 K. The dissociation of water molecules to form chemically adsorbed species was scrutinised, in addition to ‘hopping’ or swapping events of protons between water molecules. Particular foci have been dynamical properties of the adsorbed water molecules and OH− and H3O+ ions, the hydrogen bonds between protons in water molecules and the bridging oxygen atoms at the hematite surface, as well as the interactions between oxygen atoms in adsorbed water molecules and iron atoms at the hematite surface. Experimental results for photoelectrical current generation complement simulation findings of water dissociation.
    Scopus© Citations 26  537
  • Publication
    Application of a novel microwave plasma treatment for the sintering of nickel oxide coatings for use in dye-sensitized solar cells
    In this study the use of microwave plasma sintering of nickel oxide (NiOx) particles for use as p-type photoelectrode coatings in dye-sensitized solar cells (DSSCs) is investigated. NiOx was chosen as the photocathode for this application due to its stability, wide band gap and p-type nature. For high light conversion efficiency DSSCs require a mesoporous structure exhibiting a high surface area. This can be achieved by sintering particles of NiOx onto a conductive substrate. In this study the use of both 2.45 GHz microwave plasma and conventional furnace sintering were compared for the sintering of the NiOx particles. Coatings 1 to 2.5 μm thick were obtained from the sintered particles (mean particle size of 50 nm) on 3 mm thick fluorine-doped tin oxide (FTO) coated glass substrates. Both the furnace and microwave plasma sintering treatments were carried out at ~ 450 °C over a 5 minute period. Dye sensitization was carried out using Erythrosin B and the UV-vis absorption spectra of the NiOx coatings were compared. A 44% increase in the level of dye adsorption was obtained for the microwave plasma sintered samples as compared to that obtained through furnace treatments. While the photovoltaic performance of the DSSC fabricated using the microwave plasma treated NiOx coatings exhibited a tenfold increase in the conversion efficiency in comparison to the furnace treated samples. This enhanced performance was associated with the difference in the mesoporous structure of the sintered NiOx coatings.
    Scopus© Citations 46  2511