Now showing 1 - 10 of 51
  • Publication
    Investigation of energy and operation flexibility of membrane bioreactors by using benchmark simulation model
    The aims of this study is to investigate operation and energy flexibility of membrane bioreactors for municipal wastewater treatment by mathematical modelling. Compared to conventional active sludge technology, membrane bioreactor has better treatment performance and it can achieve complete retention of solids and very high COD removal. Based on variable electricity price structure, appropriate optimization strategy can save 16% energy cost without violating exiting discharge standards.. The results showed that MBRs have a significant potential to create considerable commercial value by providing energetic flexibility.
      160
  • Publication
    Predicting wastewater treatment plant performance during aeration demand shifting with a dual-layer reaction settling model
    Demand response (DR) programmes encourage energy end users to adjust their consumption according to energy availability and price. Municipal wastewater treatment plants are suitable candidates for the application of such programmes. Demand shedding through aeration control, subject to maintaining the plant operational limits, could have a large impact on the plant DR potential. Decreasing the aeration intensity may promote the settling of the particulate components present in the reactor mixed liquor. The scope of this study is thus to develop a mathematical model to describe this phenomenon. For this purpose, Benchmark Simulation Model No.1 was extended by implementing a dual-layer settling model in one of the aerated tanks and combining it with biochemical reaction kinetic equations. The performance of this extended model was assessed in both steady-state and dynamic conditions, switching the aeration system off for 1 hour during each day of simulation. This model will have applications in the identification of potential benefits and issues related to DR events, as well as in the simulation of the plant operation where aerated tank settling is implemented.
      61Scopus© Citations 10
  • Publication
    Antifouling activity of enzyme-functionalized silica nanobeads
    The amelioration of biofouling in industrial processing equipment is critical for performance and reliability. While conventional biocides are effective in biofouling control, they are potentially hazardous to the environment and in some cases corrosive to materials. Enzymatic approaches have been shown to be effective and can overcome the disadvantages of traditional biocides, however they are typically uneconomic for routine biofouling control. The aim of this study was to design a robust and reusable enzyme-functionalized nano-bead system having biofilm dispersion properties. This work describes the biochemical covalent functionalization of silica-based nanobeads (hereafter referred to as Si-NanoB) with Proteinase K (PK). Results showed that PK-functionalized Si-NanoB are effective in dispersing both protein-based model biofilms and structurally altering Pseudomonas fluorescens biofilms, with significant decreases in surface coverage and thickness of 30.1% and 38.85%, respectively, while increasing surface roughness by 19 % following 24 h treatments on bacterial biofilms. This study shows that enzyme-functionalized nanobeads may potentially be an environmentally friendly and cost effective alternative to pure enzyme and chemical treatments.
      408Scopus© Citations 19
  • Publication
    Comparative economic analysis of full scale MABR configurations
    The membrane-aerated biofilm reactor (MABR) is a technology that can deliver oxygen at high rates and transfer efficiencies. This paper provides a comparative cost analysis of the MABR compared to the activated sludge process. Membrane cost and electricity cost were found to be the critical parameters determining the relative feasibility of the conventional process to the membrane based process. The general downward trend in the market price of membranes and the steady increase in energy costs in recent years may prove to be a strong driver for the further development of this technology.
      1677
  • Publication
    Rapid depletion of dissolved oxygen in 96 well microtitre plate Staphylococcus epidermidis biofilm assays promotes biofilm development and is influenced by inoculum cell concentration
    Biofilm-related research using 96-well microtiter plates involves static incubation of plates indiscriminate of environmental conditions, making oxygen availability an important variable which has not been considered to date. By directly measuring dissolved oxygen concentration over time we report here that dissolved oxygen is rapidly consumed in Staphylococcus epidermidis biofilm cultures grown in 96-well plates irrespective of the oxygen concentration in the gaseous environment in which the plates are incubated. These data indicate that depletion of dissolved oxygen during growth of bacterial biofilm cultures in 96-well plates may significantly influence biofilm production. Furthermore higher inoculum cell concentrations are associated with more rapid consumption of dissolved oxygen and higher levels of S. epidermidis biofilm production. Our data reveal that oxygen depletion during bacterial growth in 96-well plates may significantly influence biofilm production and should be considered in the interpretation of experimental data using this biofilm model.
      984Scopus© Citations 19
  • Publication
    Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus
    A promising tool to achieve more flexibility within power systems is demand response (DR). End users in many strands of industry have been subject to research regarding the opportunities for implementing DR programmes. We review recent DR modelling approaches in the realm of energy systems models and industrial process models. We find that existing models over- or underestimate the available DR potential from an industrial end user for two main reasons. First, the interaction between power system operation and industrial process operation caused by DR is not taken into account. Second, models abstract from critical physical process constraints affecting the DR potential. To illustrate this, we discuss the wastewater treatment process as one industrial end user within the energy-water nexus, for which the lack of suitable modelling tools is affecting the accurate assessment of the DR potential. Case studies indicate the potential for wastewater treatment plants to provide DR, but no study acknowledges the endogeneity of energy prices which arises from a large-scale utilisation of DR. Therefore, we propose an integrated modelling approach, combining energy system optimisation with the level of operational detail in process simulation models. This will yield a higher level of accuracy regarding the assessment of DR potential from a specific process, such as wastewater treatment.
      41Scopus© Citations 50
  • Publication
    Tracer measurements reveal experimental evidence of biofilm consolidation
    (Wiley, 2007-11-01)
    The ability to simultaneously measure both biofilm thickness and the mass transfer coefficient of an inert tracer through it provides a powerful method to study biofilm development. In this communication previously published data has been collated to interpret global trends in biofilm structure during the transition towards steady-state. It appears that sudden changes in biofilm structure (directly related to the rate of change of biofilm mass transfer resistance) may occur following transitions in rate of biomass production. These observations are consistent with the concept of consolidation, recently introduced into spatially structured biofilm mathematical models to account for structural realignment of the biofilm under dynamic conditions.
      415Scopus© Citations 16
  • Publication
    Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor
    Fluorinated organic compounds have widespread applications, and their accumulation in the environment is a concern. Biofilm reactors are an effective technology for the treatment of contaminated wastewater, yet almost no research has been conducted on the effectiveness of biofilms for the biodegradation of fluorinated aliphatic compounds. In this paper we describe experiments undertaken to investigate the degradation of fluoroacetate using a membrane aerated biofilm reactor (MABR) by Pseudomonas fluorescens DSM8341. The concentration of fluoroacetate in the medium influenced biofilm structure, with less dense biofilm observed at lower fluoroacetate loading rates. As biofilm thickness increased, oxygen utilization decreased, probably as a consequence of increased resistance to oxygen transfer. Furthermore, most of the biofilm was anaerobic, since oxygen penetration depth was less than 1000 μm. Biofilm performance, in terms of fluoroacetate removal efficiency, was improved by decreasing the fluoroacetate loading rate, however increasing the intramembrane oxygen pressure had little effect on biofilm performance. A mathematical model showed that while fluoroacetate does not penetrate the entire biofilm, the defluorination intermediate metabolite glycolate does, and consequently the biofilm was not carbon limited at the biofilm−membrane interface where oxygen concentrations were highest. The model also showed the accumulation of the free fluoride ion within the biofilm. Overflow metabolism of glycolate was identified to be most likely a result of a combination of oxygen limitation and free fluoride ion inhibition. The study demonstrated the potential of MABR for treating wastewater streams contaminated with organofluorine compounds.
      956Scopus© Citations 26
  • Publication
    Disinfection of meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma
    The effective disinfection of hospital surfaces is recognised as an important factor in preventing hospital-acquired infections. The purpose of this study was to quantify the disinfection rate of a novel gas plasma system on clinically relevant biofilms. Clinical isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus (MRSA) were grown as biofilms on glass surfaces and tested in a disinfection container remote from the plasma source. The strains used in this study were known to produce substantial quantities of biofilm and average log10 counts were 9.0 and 9.1 cfu/cm2 for S. epidermidis and MRSA respectively. Counts were reduced by between 4 and 4.5 log10 after 1 h of exposure for MRSA and S. epidermidis respectively. More prolonged treatment in the case of MRSA biofilms resulted in a 5.5 log10 reduction after 90 min. Biofilm samples were also placed in medical device packaging bags and similar rates of disinfection were observed.
      1698Scopus© Citations 48
  • Publication
    Oxygen-mediated regulation of biofilm development is controlled by the alternative sigma factor sigma(B) in Staphylococcus epidermidis
    Using a modified rotating-disk reactor to sparge oxygen to Staphylococcus epidermidis cultures, we found that oxygen negatively regulates biofilm development by influencing the activity of {sigma}B. Under anaerobic conditions, increased {sigma}B activity activates icaADBC, which encodes enzymes responsible for polysaccharide intercellular adhesin synthesis, by repressing transcription of the negative regulator icaR.
      472Scopus© Citations 34