Now showing 1 - 10 of 16
  • Publication
    Generalized model of photopolymer behavior for use in optimized holographic data storage scheduling algorithms
    A generalized model of photo-polymerization in free radical chainforming polymers has been developed. Applying this model to data storage, optimized scheduling algorithms are developed for the multiplexing of multiple data pages of uniform diffraction efficiency.
  • Publication
    Modeling the photochemical effects present during holographic grating formation in photopolymer materials
    The development of a theoretical model of the processes present during the formation of a holographic grating in photopolymer materials is crucial in enabling further development of holographic applications. To achieve this, it is necessary to understand the photochemical and photophysical processes involved and to isolate their effects, enabling each to be modeled accurately. While photopolymer materials are practical materials for use as holographic recording media, understanding the recording mechanisms will allow their limitations for certain processes to be overcome. In this paper we report generalizations of the nonlocal polymer driven diffusion (NPDD) model to include the effects of photosensitive dye absorption and the inhibition effects.
      513Scopus© Citations 60
  • Publication
    Holographic photopolymer materials : nonlocal polymerization-driven diffusion under nonideal kinetic conditions
    The kinetics of photosensitive polymer holographic recording materials are examined assuming a material that exhibits nonideal kinetic behavior. Previously, a linear relationship between monomer concentration and polymerization was assumed when deriving the nonlocal polymer-driven diffusion (NPDD) model. This is consistent with ideal kinetic conditions in which chain termination is governed by a bimolecular process. However, these models have been reported to disagree with experimental results. In a limiting case of nonideal kinetics it is assumed that primary termination is dominant. In this case the NPDD model must be modified to incorporate a quadratic relationship between the monomer concentration and the polymerization rate. By use of a multiharmonic expansion method of solution the predictions of ideal (bimolecular or linear) and nonideal (primary or quadratic) kinetic models are compared. By using these models we carried out numerical fits to experimental growth curves of gratings recorded in an acrylamide-based cross-linked photopolymer system. Superior fits are achieved by use of the primary termination model. Physical parameters such as the diffusion constant are extracted and compared with results previously reported in the literature.
      375Scopus© Citations 105
  • Publication
    Effects of absorption and inhibition during grating formation in photopolymer materials
    Photopolymer materials are practical materials for use as holographic recording media, as they are inexpensive and self-processing (dry processed). Understanding the photochemical mechanisms present during recording in these materials is crucial to enable further development. One such mechanism is the existence of an inhibition period at the start of grating growth during which the formation of polymer chains is suppressed. Some previous studies have indicated possible explanations for this effect and approximate models have been proposed to explain the observed behavior. We examine in detail the kinetic behavior involved within the photopolymer material during recording to obtain a clearer picture of the photochemical processes present. Experiments are reported and carried out with the specific aim of understanding these processes. The results support our description of the inhibition process in an acrylamide-based photopolymer and can be used to predict behavior under certain conditions.
      447Scopus© Citations 70
  • Publication
    Holographic data storage : optimized scheduling using the nonlocal polymerization-driven diffusion model
    (Optical Society of America, 2004-08-01) ; ;
    The choice of an exposure schedule that maximizes the uniformity and capacity of a holographic recording medium is of critical importance in ensuring the optimum performance of any potential holographic data storage scheme. We propose a methodology to identify an optimum exposure schedule for photopolymer materials governed by the nonlocal polymerization-driven diffusion model. Using this model, the relationship between the material properties (nonlocality and nonlinearity), the recording conditions and the schedule are clarified. In this way, we provide a first-order comparison of the behavior of particular classes of photopolymer materials for use as holographic storage media. We demonstrate, using the nonlocal polymerization-driven diffusion model, that the exposure schedule is independent of the number of gratings to be recorded and that the optimum schedule may necessitate leaving unpolymerized monomer at the end of the recording process.
      361Scopus© Citations 47
  • Publication
    Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length
    One of the key predictions of the nonlocal photopolymerization driven diffusion (NPDD) model is that a reduction in the extent of the nonlocal effects within a material will improve the high spatial frequency response. The NPDD model is generalized to more accurately model material absorbtivity. By eliminating the necessity for the steady-state approximation to describe the rate of change of monomer radical concentration, a more accurate physical representation of the initial transient behavior, at the start of grating growth, is achieved, which includes the effects of oxygen-based inhibition. The spatial frequency response of an acrylamide/polyvinylalcohol-based photopolymer is then improved through the addition of a chain transfer agent (CTA), sodium formate. Using the NPDD model demonstrates that the CTA has the effect of decreasing the average length of the polyacrylamide (PA) chains formed, thus reducing the nonlocal response parameter, σ. Further independent confirmation of the resulting reduction in the PA average molecular weight is provided using a diffusion-based holographic technique
      520Scopus© Citations 81
  • Publication
    Nonlocal polymerization-driven diffusion-model-based examination of the scaling law for holographic data storage
    For the first time to our knowledge, a detailed theoretical basis is provided for the well-known inverse-square scaling law of holographic diffraction, which states that replay diffraction efficiency η=Γ/M2, where M is the number of gratings stored and Γ is a constant system parameter. This law is shown to hold for photopolymer recording media governed by the predictions of the nonlocal polymerization-driven diffusion model. On the basis of the analysis, we (i) propose a media inverse scaling law, (ii) relate Γ to photopolymer material parameters and the hologram geometry and replay conditions, and (iii) comment on the form and validity of the diffraction efficiency inverse-square scaling law for higher-diffraction-efficiency gratings.
    Scopus© Citations 26  410
  • Publication
    Material kinetics during fabrication of holographic gratings in acrylamide-based photopolymer
    We describe holographic grating formation in Acrylamide-based photopolymer material using the NonLocal Diffusion Driven model & discuss radical suppression leading to an inhibition period before grating growth. Diffusion effects of monomer & polymer are discussed.
  • Publication
    Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model
    The nonlocal polymerization-driven diffusion model (NPDD) has been shown to predict high spatial frequency cut-off in photopolymers and to accurately predict higher order grating components. We propose an extension to the NPDD model to account for the temporal response associated with polymer chain growth. An exponential response function is proposed to describe transient effects during the polymerization process. The extended model is then solved using a finite element technique and the nature of grating evolution examined in the case when illumination is stopped prior to the saturation of the grating recording process. Based on independently determined refractive index measurements we determine the temporal evolution of the refractive index modulation and the resulting diffraction efficiency using rigorous coupled wave theory. Material parameters are then extracted based on fits to experimental data for nonlinear and both ideal and non-ideal kinetic models.
      400Scopus© Citations 100
  • Publication
    Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers
    In recent years the interest in thick holographic recording materials for storage applications has increased. In particular, photopolymers are interesting materials for obtaining inexpensive thick dry layers with low noise and high diffraction efficiencies. Nonetheless, as will be demonstrated in this work, the attenuation in depth of light during the recording limits dramatically the effective optical thickness of the material. This effect must be taken into account whenever thick diffraction gratings are recorded in photopolymer materials. In this work the differences between optical and physical thickness are analyzed, applying a method based on the Rigorous Coupled Wave Theory and taking into account the attenuation in depth of the refractive index profile. By doing this the maximum optical thickness that can be achieved can be calculated. When the effective thickness is known, then the real storage capacity of the material can be obtained.
      482Scopus© Citations 68