Now showing 1 - 1 of 1
  • Publication
    Investigation of AFM-based machining of ferroelectric thin films at the nanoscale
    Atomic force microscopy (AFM) has been utilized for nanomechanical machining of various materials including polymers, metals, and semiconductors. Despite being important candidate materials for a wide range of applications including data storage and actuators, ferroelectric materials have rarely been machined via AFM. AFM-based machining of ferroelectric nanostructures offers advantages over established techniques, such as bottom-up approaches and focused ion beam milling, in select cases where low damage and low-cost modification of already-fabricated thin films are required. Through a systematic investigation of a broad range of AFM parameters, we demonstrate that AFM-based machining provides a low-cost option to rapidly modify local regions of the film, as well as fabricate a range of different nanostructures, including a nanocapacitor array with individually addressable ferroelectric elements.
      284ScopusĀ© Citations 15