Now showing 1 - 9 of 9
  • Publication
    Development of the Ground Segment Communication System for the EIRSAT-1 CubeSat
    The Educational Irish Research Satellite (EIRSAT-1) is a student-led project to design, build and test Ireland’s first satellite. As part of the development, a ground segment (GS) has also been designed alongside the spacecraft. The ground segment will support two-way communications with the spacecraft throughout the mission. Communication with the satellite will occur in the very high frequency (VHF) and the ultra high frequency (UHF) bands for the uplink and downlink respectively. Different modulation schemes have been implemented for both uplink and downlink as part of the GS system. Uplink incorporates an Audio Frequency Shift-Keying (AFSK) scheme, while downlink incorporates a Gaussian Minimum Shift-Keying (GMSK) scheme. In order for the spacecraft to successfully receive a telecommand (TC) transmitted from the ground station, a framing protocol is required. AX.25 was selected as the data link layer protocol. A hardware terminal node controller (TNC) executes both the AX.25 framing and the AFSK modulation. Keep It Simple Stupid (KISS) framing software was developed to allow data to be accepted by the TNC. A software defined radio (SDR) approach has been chosen for the downlink. GNURadio is software that allows flowcharts to be built to undertake the required signal processing of the received signal, the demodulation of the signal and the decoding of data. This paper provides a detailed account of the software developed for the ground segment communication system. A review of the AX.25 and KISS framing protocols is presented. The GNURadio flowcharts that handle the signal processing and data decoding are broken down and each constituent is explained. To ensure the reliability and robustness of the system, a suite of tests was undertaken, the results of which are also presented.
  • Publication
    Update on the status of the Educational Irish Research Satellite (EIRSAT-1)
    The Educational Irish Research Satellite, EIRSAT-1, is a 2U CubeSat being implemented by a student-led team at University College Dublin, as part of the 2nd round of the European Space Agency’s Fly Your Satellite! programme. In development since 2017, the mission has several scientific, technological and outreach goals. It will fly an in-house developed antenna deployment module, along with three custom payloads, which are integrated with commercial off-the-shelf subsystems. In preparation for the flight model, a full-system engineering qualification model of the spacecraft has undergone an extensive period of test campaigns, including full functional tests, a mission test, and environmental testing at the European Space Agency’s CubeSat Support Facility in Redu, Belgium. Beyond the technical, educational, and capacity-building goals of the mission, EIRSAT-1 aims to inspire wider study of STEM subjects, while highlighting the importance of multidisciplinary teams and creating greater awareness of space in everyday life. A wide range of outreach activities are being undertaken to realise these aims. This paper provides a status update on key aspects of the EIRSAT-1 project and the next steps towards launch.
  • Publication
    Two Classes of Gamma-ray Bursts Distinguished within the First Second of Their Prompt Emission
    Studies of Gamma-Ray Burst (GRB) properties, such as duration and spectral hardness, have found evidence for additional classes, beyond the short/hard and long/soft prototypes, using model-dependent methods. In this paper, a model-independent approach was used to analyse the gamma-ray light curves of large samples of GRBs detected by BATSE, Swift/BAT and Fermi/GBM. All the features were extracted from the GRB time profiles in four energy bands using the Stationary Wavelet Transform and Principal Component Analysis. t-distributed Stochastic Neighbourhood Embedding (t-SNE) visualisation of the features revealed two distinct groups of Swift/BAT bursts using the T100 interval with 64 ms resolution data. When the same analysis was applied to 4 ms resolution data, two groups were seen to emerge within the first second (T1) post-trigger. These two groups primarily consisted of short/hard (Group 1) and long/soft (Group 2) bursts, and were 95% consistent with the groups identified using the T100 64 ms resolution data. Kilonova candidates, arising from compact object mergers, were found to belong to Group 1, while those events with associated supernovae fell into Group 2. Differences in cumulative counts between the two groups in the first second, and in the minimum variability timescale, identifiable only with the 4 ms resolution data, may account for this result. Short GRBs have particular significance for multi-messenger science as a distinctive EM signature of a binary merger, which may be discovered by its gravitational wave emissions. Incorporating the T1 interval into classification algorithms may support the rapid classification of GRBs, allowing for an improved prioritisation of targets for follow-up observations.
      161Scopus© Citations 2
  • Publication
    Exploring Sense of Belonging in Computer Science Students
    Student sense of belonging has been shown to be associated with many attributes such as motivation and persistence. However, sense of belonging can show variations according to factors such as race and gender. In this study, we examine the relationship between undergraduate Computer Science students' participation in networking, outreach, and mentoring activities and their sense of belonging. Results reveal lower levels of sense of belonging in women and self-identified minorities. However, we observed a higher sense of belonging in female students who participated in networking, outreach, and mentoring activities.
      353Scopus© Citations 22
  • Publication
    X-shooter and ALMA spectroscopy of GRB 161023A
    Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. Aims. We aim to use the afterglow of GRB 161023A at a redshift z = 2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight. Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst. Results. We infer a host-galaxy metallicity of [Zn/H] = −1.11 ± 0.07, which, corrected for dust depletion, results in [X/H] = −0.94 ± 0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cm−2) < 15.7 and log(NHCO+/cm−-12, which are consistent with those that we obtain from the optical spectra, log(NH2/cm−2)< 15.2 and log(NCO/cm−2) < 14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components. Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust.
      312Scopus© Citations 17
  • Publication
    Two Dimensional Clustering of Swift/BAT and Fermi/GBM Gamma-ray Bursts
    Studies of Gamma-ray Burst (GRB) properties, such as duration and spectral hardness, have found evidence for additional classes beyond the short-hard (merger) and long-soft (collapsar) prototypes. Several clustering analyses of the duration-hardness plane identified a third, intermediate duration, class. In this work, Gaussian Mixture Model-based (GMM) clustering is applied to the Swift/BAT and Fermi/GBM samples of GRBs. The results obtained by the hierarchical combination of Gaussian components (or clusters) based on an entropy criterion are presented. This method counteracts possible overfitting arising from the application of Gaussian models to non-Gaussian underlying data. While the initial GMM clustering of the hardness-duration plane identifies three components (short/intermediate/long) for the Swift/BAT and Fermi/GBM samples, only two components (short/long) remain once the entropy criterion is applied. The analysis presented here suggests that the intermediate duration class may be the result of overfitting, rather than evidence of a distinct underlying population.
      84Scopus© Citations 3
  • Publication
    Development and Validation of the Operations Procedures and Manual for a 2U CubeSat, EIRSAT-1, with Three Novel Payloads
    The CubeSat standard, relatively short launch timescale, and orders of magnitude difference in cost in comparison to large scale missions, has allowed universities and smaller institutions to develop space missions. The Educational Irish Research Satellite (EIRSAT-1) is a 2U CubeSat being developed in University College Dublin (UCD) as part of the second round of the European Space Agency (ESA) Education Office’s Fly Your Satellite! (FYS) Programme. EIRSAT-1 is a student-led project to build, test, launch and operate Ireland’s first satellite. CubeSats typically use commercial off-the-shelf (COTS) components to facilitate new teams in developing a satellite on a rapid timescale. While some of the EIRSAT-1 subsystems are COTS procured from AAC Clyde Space, EIRSAT-1 has three novel experiments on-board which have been developed in UCD. The spacecraft’s Antenna Deployment Module has also been designed and built in-house. The on-board computer (OBC), procured from AAC Clyde Space, has been adapted to interface with these novel hardware components, accompanied by in-house developed software and firmware. All of these innovative subsystems complicate the CubeSat functionality making it essential to document and rigorously test the operations procedures for EIRSAT-1. In preparation for launch with these novel spacecraft subsystems, the EIRSAT-1 Operations Manual is being developed and incrementally verified. The Operations Manual contains the procedures to command and control the satellite, account for nominal and non-nominal scenarios and guide the operator in determining the cause of any anomalies observed during the mission and facilitate recovery. A series of operations development tests (ODTs) have been designed and conducted for a robust verification process. Each procedure is written up by a member of the EIRSAT-1 Operations Team in the EIRSAT-1 Operations Manual format. During an ODT, an in-flight scenario is considered in which the procedure under test is required. The procedure is then followed by a team member who has not been involved in the procedure development process. The feedback from these tests and from the operators is used to improve the procedures and continually update the Operations Manual. This paper will present the approach to operations development used by the EIRSAT-1 team and discuss the lessons learned for CubeSat operations development, testing and pre-flight verification.
  • Publication
    Computer science identity and sense of belonging: a case study in Ireland
    The study described in this paper investigates the role that gender plays in making the decision to study Computer Science in University College Dublin in Ireland (background influences) and investigates whether there is a difference in the perceived sense of belonging between the genders. The aim is to improve diversity and sense of belonging amongst Computer Science students, in order to ensure that our school is an inclusive space, where anyone can feel a sense of belonging regardless their gender.
      428Scopus© Citations 18
  • Publication
    EIRSAT-1 - The Educational Irish Research Satellite
    The Educational Irish Research Satellite, "EIRSAT-1", is a collaborative space project that aims to build, launch and operate the first ever Irish satellite. The EIRSAT-1 spacecraft is a 2U CubeSat incorporating three novel experiment payloads: GMOD, a gamma-ray detector; EMOD, a thermal management coating demonstration; and WBC, an attitude control algorithm. The spacecraft is currently under construction at University College Dublin and will be delivered to ESA in late 2019.