Now showing 1 - 10 of 22
  • Publication
    Deficiencies in numerical models of anisotropic nonlinearly elastic materials
    Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson’s ratio' close to the perfect incompressibility limit of 1/2 are made.
    Scopus© Citations 35  588
  • Publication
    Slight compressibility and sensitivity to changes in Poisson's ratio
    (Wiley Blackwell (John Wiley & Sons), 2011-12-12) ; ; ;
    Finite element simulations of rubbers and biological soft tissue usually assume that the material being deformed is slightly compressible. It is shown here that, in shearing deformations, the corresponding normal stress distribution can exhibit extreme sensitivity to changes in Poisson's ratio. These changes can even lead to a reversal of the usual Poynting effect. Therefore, the usual practice of arbitrarily choosing a value of Poisson's ratio when numerically modelling rubbers and soft tissue will, almost certainly, lead to a significant difference between the simulated and actual normal stresses in a sheared block because of the difference between the assumed and actual value of Poisson's ratio. The worrying conclusion is that simulations based on arbitrarily specifying Poisson's ratio close to 1∕2 cannot accurately predict the normal stress distribution even for the simplest of shearing deformations. It is shown analytically that this sensitivity is caused by the small volume changes, which inevitably acy all deformations of rubber-like materials. To minimise these effects, great care should be exercised to accurately determine Poisson's ratio before simulations begin.
      310Scopus© Citations 28
  • Publication
    Inhomogeneous deformation of brain tissue during tension tests
    Mechanical characterization of brain tissue has been investigated extensively by various research groups over the past fifty years. These properties are particularly important for modelling Traumatic Brain Injury (TBI) by using finite element human head models to simulate brain injuries under different impact conditions. They are also increasingly important for computer assisted neurosurgery. During severe impact conditions, brain tissue experiences compression, tension and shear; however only limited tests have been performed in tension. Typically, cylindrical specimen are prepared and glued to platens to perform tensile tests which produce an inhomogeneous deformation field near the boundaries, thus contributing to higher magnitudes of stresses. In this research, we present the design and calibration of a High Rate Tension Device (HRTD) capable of performing tests up to a maximum strain rate of 90/s. We use experimental and numerical methods to investigate the effects of inhomogeneous deformation of porcine brain tissue during tension at different specimen thicknesses (4.0 – 14.0 mm), by performing tension tests at a strain rate of 30/s. One-term Ogden material parameters ( = 4395.0 Pa, a = - 2.8) were derived by performing an inverse finite element analysis to model all experimental data. A similar procedure was adopted to determine the Young’s modulus ( E = 11200 Pa) of the linear elastic regime. Based on this analysis, brain specimens of aspect ratio (diameter/thickness) S = 10/10 or lower (10/12, 10/13) are considered suitable for minimizing the effects of inhomogeneous deformation during tension tests.
      492Scopus© Citations 37
  • Publication
    Non-invasive evaluation of skin tension lines with elastic waves
    Background: Since their discovery by Karl Langer in the 19th Century, Skin Tension Lines (STLs) have been used by surgeons to decide the location and orientation of an incision. Although these lines are patient-specific, most surgeons rely on generic maps to determine their orientation. Beyond the imprecise pinch test, there still exists no accepted method for determining the STLs in vivo. Methods: (i) The speed of an elastic motion travelling radially on the skin of canine cadavers was measured with a commercial device called the Reviscometer R . (ii) Similar to the original experiments conducted by Karl Langer, circular excisions were made on the skin and the subsequent geometric changes to the resulting wounds and excised samples were used to determine the orientation of STLs. Results A marked anisotropy in the speed in the elastic wave travelling radially was observed. The orientation of the fastest wave was found to correlate with the orientation of the elongated wound (P < 0.001, R2 = 74%). Similarly, the orientation of fastest wave was the same for both in vivo and excised isolated samples, indicating that the STLs have a structural basis. Resulting wounds expanded by an average area of 9% (+16% along STL and −10% across) while excised skin shrunk by an average of 33% (23% along STL and 10% across). Conclusion: Elastic surface wave propagation has been validated experimentally as a robust method for determining the orientation of STLs nondestructively and non-invasively. This study has implications for the identification of STLs and for the prediction of skin tension levels, both important factors in reconstructive surgeries for both medicine and veterinary medicine.
      585Scopus© Citations 20
  • Publication
    Determination of friction coefficient in unconfined compression of brain tissue
    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental–computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s.
      349Scopus© Citations 26
  • Publication
    Automated Estimation of Collagen Fibre Dispersion in the Dermis and its Contribution to the Anisotropic Behaviour of Skin
    Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis (p<0.001,R2=0.95) was observed. The structural parameters of the Gasser–Ogden–Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was κ=0.1404±0.0028. The constitutive parameters μ, k 1 and k 2 were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for μ, k 1 and k 2 were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.
    Scopus© Citations 147  326
  • Publication
    Towards a predictive assessment of stab-penetration forces
    Collaborative research between the disciplines of forensic pathology and biomechanics was undertaken to investigate the hyperelastic properties of human skin, to determine the force required for sharp instrument penetration of skin, and to develop a finite element model, which reflects the mechanisms of sharp instrument penetration. These studies have led to the development of a 'stab metric', based on simulations, to describe the force magnitudes in stabbing incidents. Such a metric should, in time, replace the crudely quantitative descriptors of stabbing forces currently used by forensic pathologists.
      415Scopus© Citations 11
  • Publication
    Bending instabilities of soft biological tissues
    Rubber components and soft biological tissues are often subjected to large bending deformations while 'in service'. The circumferential line elements on the inner face of a bent block can contract up to a certain critical stretch ratio λcr (say) before bifurcation occurs and axial creases appear. For several models used to describe rubber, it is found that λcr=0.56, allowing for a 44% contraction. For models used to describe arteries it is found, somewhat surprisingly, that the strain-stiffening effect promotes instability. For example, the models used for the artery of a seventy-year old human predict that λcr=0.73, allowing only for a 27% contraction. Tensile experiments conducted on pig skin indicate that bending instabilities should occur even earlier there.
      302Scopus© Citations 76
  • Publication
    Third- and fourth-order elasticities of biological soft tissues
    (Acoustical Society of America, 2010) ; ;
    In the theory of weakly nonlinear elasticity,Hamilton et al. [J. Acoust. Soc. Am.116, 41–44 (2004)] identified W=μI2+(A/3)I3+DI22 as the fourth-order expansion of the strain-energy density for incompressible isotropic solids. Subsequently, much effort focused on theoretical and experimental developments linked to this expression in order to inform the modeling of gels and soft biological tissues. However, while many soft tissues can be treated as incompressible, they are not in general isotropic, and their anisotropy is associated with the presence of oriented collagen fiber bundles. Here the expansion of W is carried up to fourth order in the case where there exists one family of parallel fibers in the tissue. The results are then applied to acoustoelasticity, with a view to determining the second- and third-order nonlinear constants by employing small-amplitude transverse waves propagating in a deformed soft tissue.
      265Scopus© Citations 46
  • Publication
    Characterization of the anisotropic mechanical properties of excised human skin
    The mechanical properties of skin are important for a number of applications including surgery, dermatology, impact biomechanics and forensic science. In this study, we have investigated the influence of location and orientation on the deformation characteristics of 56 samples of excised human skin. Uniaxial tensile tests were carried out at a strain rate of 0.012 s−1 on skin from the back. Digital Image Correlation was used for 2D strain measurement and a histological examination of the dermis was also performed. The mean ultimate tensile strength (UTS) was 21.6±8.4 MPa, the mean failure strain 54%±17%, the mean initial slope 1.18±0.88 MPa, the mean elastic modulus 83.3±34.9 MPa and the mean strain energy was 3.6±1.6 MJ/m3. A multivariate analysis of variance has shown that these mechanical properties of skin are dependent upon the orientation of the Langer lines (P<0.0001−P=0.046). The location of specimens on the back was also found to have a significant effect on the UTS (P=0.0002), the elastic modulus (P=0.001) and the strain energy (P=0.0052). The histological investigation concluded that there is a definite correlation between the orientation of the Langer lines and the preferred orientation of collagen fibres in the dermis (P<0.001). The data obtained in this study will provide essential information for those wishing to model the skin using a structural constitutive model.
      407Scopus© Citations 496