Now showing 1 - 10 of 18
  • Publication
    Multi-group multicast beamformer design for MIMO-OFDM transmission
    We study the problem of designing multicast precoders for multiple groups with the objective of minimizing total transmit power under certain guaranteed quality-of-service (QoS) requirements. To avail both spatial and frequency diversity, we consider a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. The problem of interest is in fact a nonconvex quadratically constrained quadratic program (QCQP) for which the prevailing semidefinite relaxation (SDR) technique is inefficient for at least two reasons. At first, the relaxed problem cannot be equivalently reformulated as a semidefinite programming (SDP). Secondly, even if the relaxed problem is solved, the so-called randomization procedure should be used to generate a high quality feasible solution to the original QCQP. However, such a randomization procedure is difficult in the considered system model. To overcome these shortcomings, we adopt successive convex approximation (SCA) framework in this paper to find beamformers directly. The proposed method not only avoids the randomization procedure mentioned above but also requires lower computational complexity compared to the SDR approach. Numerical experiments are carried out to demonstrate the effectiveness of the proposed algorithm.
      20
  • Publication
    Decentralized coordinated beamforming for weighted sum energy efficiency maximization in multi-cell MISO downlink
    We study energy-efficient decentralized coordinated beam-forming in multi-cell multiuser multiple-input single-output system. The problem of interest is to maximize the weighted sum energy efficiency subject to user-specific quality of service constraints. The original problem is iteratively approximated as a convex program according to successive convex approximation (SCA) principle. The convex problem at each iteration is then formulated as a general global consensus problem, which is solved via alternating direction method of multipliers (ADMM). This enables base stations to independently and in parallel optimize their beamformers relying only on local channel state information and limited backhaul information exchange. In addition to waiting for the ADMM to converge as conventionally when solving the approximate convex program, we propose a method where only one ADMM iteration is performed after each SCA update step. Numerical results illustrate the fast convergence of the proposed methods and show that performing only one ADMM iteration per each convex problem can significantly improve the convergence speed.
      102Scopus© Citations 16
  • Publication
    Energy Efficiency Maximization for C-RANs: Discrete Monotonic Optimization, Penalty, and ℓ0-Approximation Methods
    We study downlink of multiantenna cloud radio access networks with finite-capacity fronthaul links. The aim is to propose joint designs of beamforming and remote radio head (RRH)-user association, subject to constraints on users' quality-of-service, limited capacity of fronthaul links and transmit power, to maximize the system energy efficiency. To cope with the limited-capacity fronthaul we consider the problem of RRH-user association to select a subset of users that can be served by each RRH. Moreover, different to the conventional power consumption models, we take into account the dependence of the baseband signal processing power on the data rate, as well as the dynamics of the efficiency of power amplifiers. The considered problem leads to a mixed binary integer program which is difficult to solve. Our first contribution is to derive a globally optimal solution for the considered problem by customizing a discrete branch-reduce-and-bound approach. Since the global optimization method requires a high computational effort, we further propose two suboptimal solutions able to achieve the near optimal performance but with much reduced complexity. To this end, we transform the design problem into continuous (but inherently nonconvex) programs by two approaches: penalty and l 0 -approximation methods. These resulting continuous nonconvex problems are then solved by the successive convex approximation framework. Numerical results are provided to evaluate the effectiveness of the proposed approaches.
      222Scopus© Citations 17
  • Publication
    Queue Aware Resource Optimization in Latency Constrained Dynamic Networks
    Low latency communications is one of the key design targets in future wireless networks. We propose a queue aware algorithm to optimize resources guaranteeing low latency in multiple-input single-output (MISO) networks. Proposed system model is based on dynamic network architecture (DNA), where some terminals can be configured as temporary access points (APs) on demand when connected to the Internet. Therein, we jointly optimize the user-AP association and queue weighted sum rate of the network, subject to limitations of total transmit power of the APs and minimum delay requirements of the users. The user-AP association is viewed as finding a sparsity constrained solution to the problem of minimizing ℓ q -norm of the difference between queue and service rate of users. Finally, the efficacy of the proposed algorithm in terms of network latency and its fast convergence are demonstrated using numerical experiments. Simulation results show that the proposed algorithm yields up to two-fold latency reductions compared to the state-of-the-art techniques.
      152
  • Publication
    Energy Efficiency Fairness for Multi-Pair Wireless-Powered Relaying Systems
    We consider a multi-pair amplify-and-forward relay network where the energy-constrained relays adopting the time-switching protocol harvest energy from the radio-frequency signals transmitted by the users for assisting user data transmission. Both one-way and two-way relaying techniques are investigated. Aiming at energy efficiency (EE) fairness among the user pairs, we construct an energy consumption model incorporating rate-dependent signal processing power, the dependence on output power level of power amplifiers’ efficiency, and nonlinear energy harvesting (EH) circuits. Then, we formulate the max-min EE fairness problems in which the data rates, users’ transmit power, relays’ processing coefficient, and EH time are jointly optimized under the constraints on the quality of service and users’ maximum transmit power. To achieve efficient suboptimal solutions to these nonconvex problems, we devise monotonic descent algorithms based on the inner approximation (IA) framework, which solve a second-order-cone program in each iteration. To further simplify the designs, we propose an approach combining IA and zero-forcing beamforming, which eliminates inter-pair interference and reduces the numbers of variables and required iterations. Finally, extensive numerical results are presented to validate the proposed approaches. More specifically, the results demonstrate that ignoring the realistic aspects of power consumption might degrade the performance remarkably, and jointly designing parameters involved could significantly enhance the EE.
      305Scopus© Citations 26
  • Publication
    Topology Adaptive Sum Rate Maximization in the Downlink of Dynamic Wireless Networks
    Dynamic network architectures (DNAs) have been developed under the assumption that some terminals can be converted into temporary access points (APs) anytime when connected to the Internet. In this paper, we consider the problem of assigning a group of users to a set of potential APs with the aim to maximize the downlink system throughput of DNA networks, subject to total transmit power and users' quality of service (QoS) constraints. In our first method, we relax the integer optimization variables to be continuous. The resulting non-convex continuous optimization problem is solved using successive convex approximation framework to arrive at a sequence of second-order cone programs (SOCPs). In the next method, the selection process is viewed as finding a sparsity constrained solution to our problem of sum rate maximization. It is demonstrated in numerical results that while the first approach has better data rates for dense networks, the sparsity oriented method has a superior speed of convergence. Moreover, for the scenarios considered, in addition to comprehensively outperforming some well-known approaches, our algorithms yield data rates close to those obtained by branch and bound method.
      385Scopus© Citations 3
  • Publication
    Efficient Algorithms for Sum Rate Maximization in Fronthaul-Constrained C-RANs
    We consider downlink transmission of a fronthaul-constrained cloud radio access network. Our aim is to maximize the system sum data rate via jointly designing beamforming and user association. The problem is basically a mixed integer non-convex programs for which a global solution requires a prohibitively high computational effort. The focus is thus on efficient solutions capable of achieving the near optimal performance with low complexity. To this end, we transform the design problem into continuous programs by two approaches: penalty and sparse approximation methods. The resulting continuous nonconvex problems are then solved by the successive convex approximation framework. Numerical results indicate that the proposed methods are near-optimal, and outperform existing suboptimal methods in terms of achieved performances and computational complexity.
      137
  • Publication
    Globally Optimal Energy Efficiency Maximization for Capacity-Limited Fronthaul Crans with Dynamic Power Amplifiers’ Efficiency
    A joint beamforming and remote radio head (RRH)-user association design for downlink of cloud radio access networks (CRANs) is considered. The aim is to maximize the system energy efficiency subject to constraints on users' quality-of-service, capacity offronthaullinks and transmit power. Different to the conventional power consumption models, we embrace the dependence of baseband signal processing power on the data rate, and the dynamics of the power amplifiers' efficiency. The considered problem is a mixed Boolean nonconvex program whose optimal solution is difficult to find. As our main contribution, we provide a discrete branch-reduce-and-bound (DBRnB) approach to solve the problem globally. We also make some modifications to the standard DBRnB procedure. Those remarkably improve the convergence performance. Numerical results are provided to confirm the validity of the proposed method.
      319
  • Publication
    Fast Adaptive Minorization-Maximization Procedure for Beamforming Design of Downlink NOMA Systems
    We develop a novel technique to accelerate minorization-maximization (MM) procedure for the non-orthogonal multiple access (NOMA) weighted sum rate maximization problem. Specifically, we exploit the Lipschitz continuity of the gradient of the objective function to adaptively update the MM algorithm. With fewer additional analysis variables and low complexity second-order cone program (SOCP) to solve in each iteration of the MM algorithm, the proposed approach converges quickly at a small computational cost. By numerical simulation results, our algorithm is shown to greatly outperform known solutions in terms of achieved sum rates and computational complexity.
      214Scopus© Citations 3
  • Publication
    On Spectral Efficiency for Multiuser MISO Systems Under Imperfect Channel Information
    We consider downlink transmission whereby a multiantenna base station simultaneously transmits data to multiple single-antenna users. We focus on slow flat fading channel where the channel state information is imperfect, the channel estimation error is unbounded and its statistics are known. The aim is to design beamforming vectors such that the sum rate is maximized under the constraints on probability of successful transmission for each user and maximum transmit power. The optimization problem is intractable due to the chance constraints. To this end, we propose an efficient solution drawn upon stochastic optimization. In particular, we first use the step function and its smooth approximation to get an approximate nonconvex stochastic program of the considered problem. We then develop an iterative procedure to solve the stochastic program based on the stochastic successive convex approximation framework. The numerical results show that the proposed solution can achieve remarkable sum rate gains compared to the conventional one.
      166Scopus© Citations 1