Now showing 1 - 10 of 19
  • Publication
    The Fight against COVID-19 Pandemic with 5G Technologies
    COVID-19 pandemic has affected the world in an unexpected manner. The human race is battling against the pandemic while schools, universities, industries, hospitals and governments are seeking new methods and technologies to seamlessly continue their usual operations. In response, this paper presents how 5G and IoT (Internet of Things) related technologies can be efficiently utilized and developed to fight against the COVID-19 pandemic. Several use-cases on how 5G and IoT can be enablers to provide innovative solutions in the areas of telehealth, contact tracing, education, retail and supply chains, e-government/ remote office/ information sharing, smart manufacturing and factory automation, e-tourism and entertainment are presented along with their technical requirements and challenges. It is envisaged that the proposed solutions will be instrumental to facilitate the usual lifestyle, work and other day-to-day activities of humans in the post-pandemic world.
    Scopus© Citations 120  253
  • Publication
    Performance Analysis of Local 5G Operator Architectures for Industrial Internet
    5G calls for a network architecture that ensures ultra-responsive and ultra-reliable communication links, in addition to the high degree of flexibility and customization required by different vertical sectors. The novel concept called local 5G networks enables a versatile set of stakeholders to operate 5G networks within their premises with guaranteed quality and reliability to complement Mobile Network Operators’ (MNOs) offerings. In this paper, we propose a descriptive architecture for a local 5G operator which provides user specific and location specific services in a spatially confined environment i.e. industrial internet environment. In addition to that, we propose hybrid architecture options where both the local 5G operator and MNO collaboratively contribute to establishing the core network to cater to such communications. The architecture is discussed in terms of network functions and the operational units which entail the core and radio access networks in a smart factory environment which supports Industry 4.0 standards. Moreover, to realize the conceptual design, we provide simulation results for the latency measurements of the proposed architecture options with respect to an Augmented Reality (AR), massive wireless sensor networks and mobile robots use cases. Thereby we discuss the benefits of deploying core network functions locally to cater to specialized user requirements, rather than continuing with the conventional approach where only MNOs can deploy cellular networks.
    Scopus© Citations 29  421
  • Publication
    Survey on Blockchain based Smart Contracts: Technical Aspects and Future Research
    Internet of Things (IoT) is an emerging technology that makes people’s lives smart by conquering a plethora of diverse application and service areas. In near future, the fifth-generation (5G) wireless networks provide the connectivity for this IoT ecosystem. It has been carefully designed to facilitate the exponential growth in the IoT field. Network slicing is one of the key technologies in the 5G architecture that has the ability to divide the physical network into multiple logical networks (i.e. slices) with different network characteristics. Therefore, network slicing is also a key enabler of realisation of IoT in 5G. Network slicing can satisfy the various networking demands by heterogeneous IoT applications via dedicated slices. In this survey, we present a comprehensive analysis of the exploitation of network slicing in IoT realisation. We discuss network slicing utilisation in different IoT application scenarios, along with the technical challenges that can be solved via network slicing. Furthermore, integration challenges and open research problems related to the network slicing in the IoT realisation are also discussed in this paper. Finally, we discuss the role of other emerging technologies and concepts, such as blockchain and Artificial Intelligence/Machine Learning(AI/ML) in network slicing and IoT integration
    Scopus© Citations 56  548
  • Publication
    Proxy re-encryption enabled secure and anonymous IoT data sharing platform based on blockchain
    Data is central to the Internet of Things (IoT) ecosystem. With billions of devices connected, most of the current IoT systems are using centralized cloud-based data sharing systems, which will be difficult to scale up to meet the demands of future IoT systems. The involvement of such a third-party service provider requires also trust from both the sensor owner and sensor data user. Moreover, fees need to be paid for their services. To tackle both the scalability and trust issues and to automatize the payments, this paper presents a blockchain-based marketplace for sharing of the IoT data. We also use a proxy re-encryption scheme for transferring the data securely and anonymously, from data producer to the consumer. The system stores the IoT data in cloud storage after encryption. To share the collected IoT data, the system establishes runtime dynamic smart contracts between the sensor and data consumer without the involvement of a trusted third-party. It also uses a very efficient proxy re-encryption scheme which allows that the data is only visible by the owner and the person present in the smart contract. This novel combination of smart contracts with proxy re-encryption provides an efficient, fast and secure platform for storing, trading and managing sensor data. The proposed system is implemented using off-the-shelf IoT sensors and computer devices. We also analyze the performance of our hybrid system by using the permission-less Ethereum blockchain and compare it to the IBM Hyperledger Fabric, a permissioned blockchain.
    Scopus© Citations 66  354
  • Publication
    Multi-Access Edge Computing and Blockchain-based Secure Telehealth System Connected with 5G and IoT
    There is a global hype in the development of digital healthcare infrastructure to cater the massive elderly population and infectious diseases. The digital facilitation is expected to ensure the patient privacy, scalability, and data integrity on the sensitive life critical healthcare data, while aligning to the global healthcare data protection standards. The patient data sharing to third parties such as research institutions and universities is also concerned as a significant contribution to the society to sharpen the research and investigations. The emergence of 5G communication technologies eradicates the borders between patients, hospital and other institutions with high end service standards. In patients' perspective, healthcare service delivery through the digital medium is beneficial in terms of time, costs, and risks. In this paper, we propose a novel Multi-access Edge Computing(MEC) and blockchain based service architecture utilizing the lightweight ECQV (Elliptic Curve Qu-Vanstone) certificates for the realtime data privacy, integrity, and authentication between IoT, MEC, and cloud. We further attached storage offloading capability to the blockchain to ensure scalability with a massive number of connected medical devices to the cloud. We introduced a rewarding scheme to the patients and hospitals through the blockchain to encourage data sharing. The access control is handled through the smart contracts. We evaluated the proposed system in a near realistic implementation using Hyperledger Fabric blockchain platform with Raspberry Pi devices to simulate the activity of the medical sensors.
    Scopus© Citations 24  574
  • Publication
    How DoS attacks can be mounted on Network Slice Broker and can they be mitigated using blockchain?
    Several recent works talk about the potential use of network slice brokering mechanism to facilitate the resource allocation of network slicing in next generation networks. This involves network tenants on the one hand and resource/infrastructure providers on the other hand. However, the potential downside of deploying Network Slice Broker (NSB) is that it can be victimized by DoS (Denial of Service) attack. Thus, the aim of this work is three fold. First, to present the possible ways in which DoS/DDoS attacks can be mounted on NSB and their adverse effects. Second, to propose and implement initial blockchain-based solution named as Security Service Blockchain (SSB) to prevent DoS attacks on NSB. Third, to enumerate the challenges and future research directions to effectively utilize blockchain for mitigating DoS/DDoS attacks on NSB. To evaluate the performance the proposed SSB framework is implemented using Hyperledger Fabric. The results manifest that the latency impact of the legitimate slice creation over scaled up malicious traffic remains minimal with the use of SSB framework. The integration of SSB with NSB results in gaining several fold reduction in latency under DoS attack scenario.
      9Scopus© Citations 6
  • Publication
    Blockchain-based Automated Certificate Revocation for 5G IoT
    Internet of Things (IoT) is a key topic of interest in modern communication context with the evolution of 5G and beyond ecosystems. 5G will interconnects billions of IoT devices wirelessly. The wireless communication exposes the devices to massive security risks in different dimensions. The Public Key Infrastructure (PKI) is one of the promising solutions to eliminate security risks. It ensures the authentication and communication integrity by using public key certificates. However, the overhead of certificate storage is a significant problem for the resource constrained IoT devices. We propose an application of Elliptic Curve Qu Vanstone (ECQV) certificates, which are lightweight in size for the resource restricted IoT devices. Furthermore, we incorporate the blockchain based smart contracts to handle the certificate related operations. We utilize the smart contracts in the certificate issuance and developed a smart contract based threat scoring mechanism to automatically revoke the certificates. The lightweight nature of ECQV certificates enables the distributed ledger to store, update, and revoke the certificates. We evaluated the proposed solution in Hyperledger Fabric blockchain platform.
    Scopus© Citations 25  389
  • Publication
    The Roadmap to 6G Security and Privacy
    Although the fifth generation (5G) wireless networks are yet to be fully investigated, the visionaries of the 6th generation (6G) echo systems have already come into the discussion. Therefore, in order to consolidate and solidify the security and privacy in 6G networks, we survey how security may impact the envisioned 6G wireless systems, possible challenges with different 6G technologies, and the potential solutions. We provide our vision on 6G security and security key performance indicators (KPIs) with the tentative threat landscape based on the foreseen 6G network architecture. Moreover, we discuss the security and privacy challenges that may encounter with the available 6G requirements and potential 6G applications. We also give the reader some insights into the standardization efforts and research-level projects relevant to 6G security. In particular, we discuss the security considerations with 6G enabling technologies such as distributed ledger technology (DLT), physical layer security, distributed AI/ML, visible light communication (VLC), THz, and quantum computing. All in all, this work intends to provide enlightening guidance for the subsequent research of 6G security and privacy at this initial phase of vision towards reality.
    Scopus© Citations 135  361
  • Publication
    The role of 5G for digital healthcare against COVID-19 pandemic: Opportunities and challenges
    COVID-19 pandemic caused a massive impact on healthcare, social life, and economies on a global scale. Apparently, technology has a vital role to enable ubiquitous and accessible digital health services in pandemic conditions as well as against “re-emergence” of COVID-19 disease in a post-pandemic era. Accordingly, 5G systems and 5G-enabled e-health solutions are paramount. This paper highlights methodologies to effectively utilize 5G for e-health use cases and its role to enable relevant digital services. It also provides a comprehensive discussion of the implementation issues, possible remedies and future research directions for 5G to alleviate the health challenges related to COVID-19.
    Scopus© Citations 99  1018
  • Publication
    A Survey on Mobile Augmented Reality with 5G Mobile Edge Computing: Architectures, Applications and Technical Aspects
    The Augmented Reality (AR) technology enhances the human perception of the world by combining the real environment with the virtual space. With the explosive growth of powerful, less expensive mobile devices, and the emergence of sophisticated communication infrastructure, Mobile Augmented Reality (MAR) applications are gaining increased popularity. MAR allows users to run AR applications on mobile devices with greater mobility and at a lower cost. The emerging 5G communication technologies act as critical enablers for future MAR applications to achieve ultra-low latency and extremely high data rates while Multi-access Edge Computing (MEC) brings enhanced computational power closer to the users to complement MAR. This paper extensively discusses the landscape of MAR through the past and its future prospects with respect to the 5G systems and complementary technology MEC. The paper especially provides an informative analysis of the network formation of current and future MAR systems in terms of cloud, edge, localized, and hybrid architectural options. The paper discusses key application areas for MAR and their future with the advent of 5G technologies. The paper also discusses the requirements and limitations of MAR technical aspects such as communication, mobility management, energy management, service offloading and migration, security, and privacy and analyzes the role of 5G technologies.
      492Scopus© Citations 261