Now showing 1 - 2 of 2
  • Publication
    Optimal algorithms for ranked enumeration of answers to full conjunctive queries
    We study ranked enumeration of join-query results according to very general orders defined by selective dioids. Our main contribution is a framework for ranked enumeration over a class of dynamic programming problems that generalizes seemingly different problems that had been studied in isolation. To this end, we extend classic algorithms that find the k-shortest paths in a weighted graph. For full conjunctive queries, including cyclic ones, our approach is optimal in terms of the time to return the top result and the delay between results. These optimality properties are derived for the widely used notion of data complexity, which treats query size as a constant. By performing a careful cost analysis, we are able to uncover a previously unknown tradeo ff between two incomparable enumeration approaches: one has lower complexity when the number of returned results is small, the other when the number is very large. We theoretically and empirically demonstrate the superiority of our techniques over batch algorithms, which produce the full result and then sort it. Our technique is not only faster for returning the first few results, but on some inputs beats the batch algorithm even when all results are produced.
      36Scopus© Citations 14
  • Publication
    Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs
    Many problems in areas as diverse as recommendation systems, social network analysis, semantic search, and distributed root cause analysis can be modeled as pattern search on labeled graphs (also called "heterogeneous information networks" or HINs). Given a large graph and a query pattern with node and edge label constraints, a fundamental challenge is to find the top-k matches according to a ranking function over edge and node weights. For users, it is difficult to select value k. We therefore propose the novel notion of an any-k ranking algorithm: for a given time budget, return as many of the top-ranked results as possible. Then, given additional time, produce the next lower-ranked results quickly as well. It can be stopped anytime, but may have to continue until all results are returned. This paper focuses on acyclic patterns over arbitrary labeled graphs. We are interested in practical algorithms that effectively exploit (1) properties of heterogeneous networks, in particular selective constraints on labels, and (2) that the users often explore only a fraction of the top-ranked results. Our solution, KARPET, carefully integrates aggressive pruning that leverages the acyclic nature of the query, and incremental guided search. It enables us to prove strong non-trivial time and space guarantees, which is generally considered very hard for this type of graph search problem. Through experimental studies we show that KARPET achieves running times in the order of milliseconds for tree patterns on large networks with millions of nodes and edges.
      294Scopus© Citations 8