Now showing 1 - 2 of 2
  • Publication
    Chito-Oligosaccharide Inhibits the De-Methylation of a CpG Island within the Leptin (LEP) Promoter during Adipogenesis of 3T3-L1 Cells
    (Public Library of Science, 2013-03-27) ; ; ;
    Chito-oligosaccharide (COS) is a natural bioactive compound, which has been shown to suppress lipid metabolic genes and lipid accumulation in differentiating adipocytes. Leptin has been identified as a key regulator of energy homeostasis and is known to be under epigenetic regulation during adipogenesis. Hence, the first objective of this experiment was to compare leptin gene (LEP) expression and leptin secretion during the different stages of adipogenesis and to investigate the effect of COS on these processes. As COS inhibited LEP expression during adipogenesis, the second aim was to investigate the methylation dynamics of a ¿CpG¿ island in the proximal region of the LEP promoter during adipogenesis and to determine the effect of COS on this process. Mouse 3T3-L1 cells were stimulated to differentiate in the absence or presence of COS and the levels of leptin mRNA and protein were evaluated on days 0, 2, 4 and 6 post-induction of differentiation (PID). The extent of de-methylation of six CpG sites was evaluated. LEP mRNA transcript and protein could not be detected on either day 0PID or 2PID. In contrast, both were detected on day 4PID (P<0.05) and 6PID (P<0.001) and both were inhibited by COS (P<0.001). Of the six CpG sites analyzed, CpG_52, CpG_62 and CpG_95 became 11.5, 5.0 and 5.0% de-methylated between day 2PID and 6PID, respectively. COS blocked this de-methylation event at CpG_52 (P<0.001), CpG_62 (P<0.01) and CpG_95 (P<0.01) on day 6PID. These data suggest that COS can have an epigenetic effect on differentiating adipocytes, a novel biological function of COS which has potential applications for the manipulation of leptin gene expression, adipogenesis, and conditions within the metabolic syndrome spectrum.
    Scopus© Citations 10  411
  • Publication
    Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol
    Epithelial damage caused by intestinal permeation enhancers is a source of debate over their safety. The medium chain fatty acid, sodium caprate (C10), causes reversible membrane perturbation at high dose levels required for efficacy in vivo, so the aim was to model it in vitro. Exposure of Caco-2 monolayers to 8.5mM C10 for 60min followed by incubation in fresh buffer led to (i) recovery in epithelial permeability (i.e. transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [(14)C]-mannitol), (ii) recovery of cell viability parameters (monolayer morphology, plasma membrane potential, mitochondrial membrane potential, and intracellular calcium) and (iii) reduction in mRNA expression associated with inflammation (IL-8). Pre-incubation of monolayers with a mucosal prostaglandin cytoprotectant was attempted in order to further decipher the mechanism of C10. Misoprostol (100nM), inhibited C10-induced changes in monolayer parameters, an effect that was partially attenuated by the EP1 receptor antagonist, SC51322. In rat isolated intestinal tissue mucosae and in situ loop instillations, C10-induced respective increases in the [(14)C]-mannitol Papp and the AUC of FITC-dextran 4000 (FD-4) were similarly inhibited by misoprostol, with accompanying morphological damage spared. These data support a temporary membrane perturbation effect of C10, which is linked to its capacity to mainly increase paracellular flux, but which can be prevented by pre-exposure to misoprostol.
    Scopus© Citations 37  724