Now showing 1 - 3 of 3
  • Publication
    Mechanically evoked cortical potentials: A physiological approach to assessment of anorectal sensory pathways
    Background: Normal defaecation involves activation of anorectal mechanoreceptors responsive to pressure and stretch. The aim of this study was to develop selective anal and rectal mucosal light-touch stimulation suitable for measurement of cortical evoked potentials (EPs) in order to explore the sensory arm of these pathways. New method: A novel device was manufactured to deliver selective rectal and/or anal light-touch stimulation using a shielded inter-dental brush mounted on a rotating stepper motor (1 Hz, 1 ms, 15° rotation). Resultant somatosensory EPs recorded with a 32-channel cortical multi-electrode array were compared to those elicited by electrical anorectal stimulation (2 mm anal plug electrode [1 Hz, 1 ms, 10 V]). Results: Eighteen anaesthetized female Wistar rats (body mass 180-250 g) were studied. Electrical and mechanical stimulation provoked similar maximal response amplitudes (electrical anorectal 39.0 μV[SEM 5.5], mechanical anal 42.2 μV[8.1], mechanical rectal 45.8 μV[9.0]). Response latency was longer following mechanical stimulation (electrical anorectal 8.8 ms[0.5], mechanical anal 16.4 ms[1.1], mechanical rectal 18.3 ms[2.5]). The extent of activated sensory cortex was smaller for mechanical stimulation. Sensory inferior rectal nerve activity was greater during anal compared to rectal mechanical in a subgroup of 4 rats. Evoked potentials were reproducible over 40 min in a subgroup of 9 rats. Comparison with existing methods: Cortical EPs are typically recorded in response to non-physiological electrical stimuli. The use of a mechanical stimulus may provide a more localized physiological method of assessment. Conclusions: To the authors' knowledge these are the first selective brush-elicited anal and rectal EPs recorded in animals and provide a physiological approach to testing of anorectal afferent pathways.
      106Scopus© Citations 8
  • Publication
    Reversal of sensory deficit through sacral neuromodulation in an animal model of fecal incontinence
    Background: Sacral neuromodulation (SNM) is a treatment option for intractable fecal incontinence. The mechanism of action is unclear, however, increasing evidence for afferent somatosensory effects exists. This study's aim was to elucidate effects of acute SNM on the cerebral cortex in a rodent model of pudendal nerve injury. Methods: The effects of 14 Hz and 2 Hz SNM on sensory cortical activation were studied. In 32 anesthetized rats, anal canal evoked potentials (EPs) were recorded over the primary somatosensory cortex. Pudendal nerve injury was produced by 1-hour inflation of two intra-pelvic balloons. Four groups were studied: balloon injury, balloon injury plus either 14 Hz or 2 Hz SNM, sham operation. Immunohistochemistry for the neural plasticity marker polysialylated neural cell adhesion molecule (PSA-NCAM) positive cells (numerical density and location) in the somatosensory cortex was performed. Key Results: Anal EP amplitudes diminished during balloon inflation; 14 Hz SNM restored diminished anal EPs to initial levels and 2 Hz SNM to above initial levels. Evoked potential latencies were prolonged during balloon inflation. The numerical density of PSA-NCAM positive cells increased in the SNM groups, but not in sham or balloon injury without SNM. Stimulated cortices showed clusters of PSA-NCAM positive cells in layers II, IV, and V. Post SNM changes were similar in both SNM groups. Conclusions & Inferences: Sacral neuromodulation augments anal representation in the sensory cortex and restores afferent pathways following injury. PSA-NCAM positive cell density is increased in stimulated cortices and positive cells are clustered in layers II, IV, and V.
      199Scopus© Citations 17
  • Publication
    Acute lumbosacral nerve stimulation does not affect anorectal motor function in a rodent model
    Background: Sacral nerve stimulation has become a first line treatment for fecal incontinence, however, its effect on the motor function of the anorectum is uncertain. The aim of this study was to apply acute lumbosacral nerve stimulation in an animal model and to determine its effect on the external and internal anal sphincter forces, the rectoanal inhibitory and excitatory reflexes, and the slow wave frequency of the internal anal sphincter. Methods: Lumbosacral nerve stimulation was applied to 16 nulliparous female rats. A novel in vivo preparation was designed to allow simultaneous monitoring of external and internal anal sphincter forces. The effect of rectal distension on the two anal sphincters was also studied. Key Results: Lumbosacral nerve stimulation delivered at either S or L in rodents did not affect sphincter forces, rectoanal reflexes or slow wave frequency of anal canal smooth muscle. Conclusions & Inferences: The absence of effect on the motor pathways of continence suggests that the mechanism of action is predominantly on sensory feedback mechanisms from the anorectum, thereby increasing cortical awareness of the pelvic floor.
      135Scopus© Citations 5