Now showing 1 - 1 of 1
  • Publication
    Pseudo-labelling Enhanced Media Bias Detection
    Leveraging unlabelled data through weak or distant supervision is a compelling approach to developing more effective text classification models. This paper proposes a simple but effective data augmentation method, which leverages the idea of pseudo-labelling to select samples from noisy distant supervision annotation datasets. The result shows that the proposed method improves the accuracy of biased news detection models.