Now showing 1 - 6 of 6
  • Publication
    Use of body worn sensors to predict ankle injuries using screening tools
    Background The Single Leg Squat (SLS) is an important screening tool in predicting those at an increased risk of ankle injuries as it relates to landing, running and cutting tasks. However, clinical analysis of this exercise is often completed visually with relatively poor intra-rater reliability. More detailed analysis of SLS completed in biomechanics laboratories is time-consuming and costly. Recent developments in body worn sensors may allow for quick assessments that produce valid and reliable data.Objective To explore a model for leveraging data obtained from wearable sensors to aid in ankle injury risk factor screening.Design A single case study design, with qualitative analysis of quantitative data.Setting University research laboratory.Participants A single participant (female, age = 24 years; height = 158 cm, body mass = 47 kg) was chosen. The participant was familiar with the SLS exercise and had completed it as part of their exercise routine for the past year.Interventions The participant completed 10 left SLS repetitions. These were recorded using the sensors and repetitions where the participant lost balance were noted. Loss of balance was defined as when the subject was unable to maintain single leg stance during the downward or upward phase of the movement and placed their other foot on the ground for support.Main outcome measurements Visual analysis showed signals from the wearable sensors (accelerometer Y and gyroscope Z) were altered when the participant lost their balance compared to signals obtained when the participant maintained balance.Conclusions These preliminary results indicate that body worn sensors may be able to automatize screening tools such as the SLS. An automated system for characterising and quantifying deviations from good form could be developed to aid clinicians and researchers. Such a system would provide objective and reliable data to clinicians and allow researchers to analyse movements quicker and in a more naturalistic setting.
      252
  • Publication
    Evaluating Performance of the Lunge Exercise with Multiple and Individual Inertial Measurement Units
    The lunge is an important component of lower limb rehabilitation, strengthening and injury risk screening. Completing the movement incorrectly alters muscle activation and increases stress on knee, hip and ankle joints. This study sought to investigate whether IMUs are capable of discriminating between correct and incorrect performance of the lunge. Eighty volunteers (57 males, 23 females, age: 24.68± 4.91 years, height: 1.75± 0.094m, body mass: 76.01±13.29kg) were fitted with five IMUs positioned on the lumbar spine, thighs and shanks. They then performed the lunge exercise with correct form and 11 specific deviations from acceptable form. Features were extracted from the labelled sensor data and used to train and evaluate random-forests classifiers. The system achieved 83% accuracy, 62% sensitivity and 90% specificity in binary classification with a single sensor placed on the right thigh and 90% accuracy, 80% sensitivity and 92% specificity using five IMUs. This multi-sensor set up can detect specific deviations with 70% accuracy. These results indicate that a single IMU has the potential to differentiate between correct and incorrect lunge form and using multiple IMUs adds the possibility of identifying specific deviations a user is making when completing the lunge.
      1438
  • Publication
    Does external walking environment affect gait patterns?
    The objective of this work is to develop an understanding of the relationship between mobility metrics obtained outside of the clinic or laboratory and the context of the external environment. Ten subjects walked with an inertial sensor on each shank and a wearable camera around their neck. They were taken on a thirty minute walk in which they mobilized over the following conditions; normal path, busy hallway, rough ground, blind folded and on a hill. Stride time, stride time variability, stance time and peak shank rotation rate during swing were calculated using previously published algorithms. Stride time was significantly different between several of the conditions. Technological advances mean that gait variables can now be captured as patients go about their daily lives. The results of this study show that the external environment has a significant impact on the quality of gait metrics. Thus, context of external walking environment is an important consideration when analyzing ambulatory gait metrics from the unsupervised home and community setting.
      274Scopus© Citations 16
  • Publication
    Evaluating Squat Performance with a Single Inertial Measurement Unit
    Inertial measurement units (IMUs) may be used during exercise performance to assess form and technique. To maximise practicality and minimise cost a single-sensor system is most desirable. This study sought to investigate whether a single lumbar-worn IMU is capable of identifying seven commonly observed squatting deviations. Twenty-two volunteers (18 males, 4 females, age: 26.09±3.98 years, height: 1.75±0.14m, body mass: 75.2±14.2 kg) performed the squat exercise correctly and with 7 induced deviations. IMU signal features were extracted for each condition. Statistical analysis and leave one subject out classifier evaluation were used to assess the ability of a single sensor to evaluate performance. Binary level classification was able to distinguish between correct and incorrect squatting performance with a sensitivity of 64.41%, specificity of 88.01% and accuracy of 80.45%. Multi-label classification was able to distinguish between specific squat deviations with a sensitivity of 59.65%, specificity of 94.84% and accuracy of 56.55%. These results indicate that a single IMU can successfully discriminate between squatting deviations. A larger data set must be collected and more complex classification techniques developed in order to create a more robust exercise analysis IMU-based system.
      1003Scopus© Citations 28
  • Publication
    Leveraging IMU Data for Accurate Exercise Performance Classification and Musculoskeletal Injury Risk Screening
    Inertial measurement units (IMUs) are becoming increasingly prevalent as a method for low cost and portable biomechanical analysis. However, to date they have not tended to be accepted into routine clinical practice. This is often due to the disconnect between translating the data collected by the sensors into meaningful and actionable information for end users. This paper outlines the work completed by our group in attempting to achieve this. We discuss the conceptual framework involved in our work, the methodological approach taken in analysing sensor signals and discuss possible application models. The work completed by our group indicates that IMU based systems have the potential to bridge the gap between laboratory and clinical movement analysis. Future work will focus on collecting a diverse range of movement data and using more sophisticated data analysis techniques to refine systems.
      627Scopus© Citations 22
  • Publication
    Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs
    BACKGROUND: The barbell squat is a popularly used lower limb rehabilitation exercise. It is also an integral exercise in injury risk screening protocols. To date athlete/patient technique has been assessed using expensive laboratory equipment or subjective clinical judgement; both of which are not without shortcomings. Inertial measurement units (IMUs) may offer a low cost solution for the objective evaluation of athlete/patient technique. However, it is not yet known if global classification techniques are effective in identifying naturally occurring, minor deviations in barbell squat technique.OBJECTIVES: The aims of this study were to: (a) determine if in combination or in isolation, IMUs positioned on the lumbar spine, thigh and shank are capable of distinguishing between acceptable and aberrant barbell squat technique; (b) determine the capabilities of an IMU system at identifying specific natural deviations from acceptable barbell squat technique; and (c) compare a personalised (N=1) classifier to a global classifier in identifying the above. METHODS: Fifty-five healthy volunteers (37 males, 18 females, age = 24.21 +/- 5.25 years, height = 1.75 +/- 0.1 m, body mass = 75.09 +/- 13.56 kg) participated in the study. All participants performed a barbell squat 3-repetition maximum max strength test. IMUs were positioned on participants' lumbar spine, both shanks and both thighs; these were utilized to record tri-axial accelerometer, gyroscope and magnetometer data during all repetitions of the barbell squat exercise. Technique was assessed and labelled by a Chartered Physiotherapist using an evaluation framework. Features were extracted from the labelled IMU data. These features were used to train and evaluate both global and personalised random forests classifiers.RESULTS: Global classification techniques produced poor accuracy (AC), sensitivity (SE) and specificity (SP) scores in binary classification even with a 5 IMU set-up in both binary (AC: 64%, SE: 70%, SP: 28%) and multi-class classification (AC: 59%, SE: 24%, SP: 84%). However, utilising personalised classification techniques even with a single IMU positioned on the left thigh produced good binary classification scores (AC: 81%, SE: 81%, SP: 84%) and moderate-to-good multi-class scores (AC: 69%, SE: 70%, SP: 89%).CONCLUSIONS: There are a number of challenges in developing global classification exercise technique evaluation systems for rehabilitation exercises such as the barbell squat. Building large, balanced data sets to train such systems is difficult and time intensive. Minor, naturally occurring deviations may not be detected utilising global classification approaches. Personalised classification approaches allow for higher accuracy and greater system efficiency for end-users in detecting naturally occurring barbell squat technique deviations. Applying this approach also allows for a single-IMU set up to achieve similar accuracy to a multi-IMU setup, which reduces total system cost and maximises system usability.
      416Scopus© Citations 11