Now showing 1 - 2 of 2
  • Publication
    Measurement of EUV spectra from high Z elements in the Large Helical Device
    Extreme ultra-violet (EUV) emission spectra from highly charged tin, xenon and tungsten ions have been measured in optically thin high-temperature plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science by using a grazing incidence spectrometer and a tracer-encapsulated solid pellet (TESPEL) injector. Quasi-continuous spectral features arising from unresolved transition array (UTA) of open 4d subshell ions were commonly observed for tin, xenon and tungsten around 13.5, 11, and 5 nm, respectively, when edge plasma was cooled enough. The spectral appearance obviously depends on edge electron temperature and atomic number. In the case of intermediate edge temperature, sharp discrete lines from highly charged open 4s or 4p subshell ions are clearly observed for tin and xenon in longer wavelength side of the UTAs but not for tungsten. Assignments of the strong discrete lines have been performed with the help of comparisons with the other experimental data and the theoretical calculations by Cowan code. Contribution of open 4f subshell ions should also be considered to interpret the whole spectra from tungsten ions.
      394Scopus© Citations 2
  • Publication
    Interpretation of spectral emission around 20 nm region from tungsten ions observed in fusion device plasmas
    We have measured extreme ultraviolet (EUV) spectra from tungsten ions around 20 nm region in plasmas produced in the Large Helical Device at the National Institute for Fusion Science. The spectra after injecting a tungsten pellet into a hydrogen plasma were monitored by a grazing incidence spectrometer. Quasicontinuum spectral feature arising from unresolved transition array (UTA) was observed around 20 nm region in plasmas with temperatures below 1.0 keV. This structure is reasonably considered to be the same one as those observed in another tokamak device or laser produced plasmas under low temperature conditions. Atomic structure calculations have been performed for tungsten ions with open 5p, 5s and 4f subshells (W7+–W27+) to interpret this commonly observed feature around 20 nm. Wavelengths and gA values for these transitions were calculated, and their mean wavelengths and extent were compared with the observations, which suggests that the emission largely arises from n = 5–5 transitions in stages lower than W27+.
      335Scopus© Citations 26