Now showing 1 - 4 of 4
  • Publication
    Basic fibroblast growth factor modifies the hypoxic response of human bone marrow stromal cells by ERK-mediated enhancement of HIF-1α activity
    Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are promising tools for the cellular therapy of human pathologies related to various forms of hypoxia. Although the current concepts of their clinical use include the expansion of hBMSC in standard cell culture conditions, the effect of the mitogen-driven ex vivo expansion on the adaptation to the hypoxic environment is unknown. Here, we provide data that the basic fibroblast growth factor (FGF2) enhances the induction of a wide range of hypoxia-related adaptive genes in hypoxic hBMSCs. We identified that the FGF2 signal is transmitted by the ERK pathway similar to that of hypoxia that also utilises the distal elements of the same signalling machinery including the extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-activated protein kinase kinases (MEK1/2) in hBMSCs. We found that the simultaneous activation of ERK1/2 by FGF2 and hypoxia transforms the activation dynamics from oscillatory into sustained one. Activated ERKs co-localise with stabilised hypoxia inducible factor-1α (HIF-1α) followed by the reduction of its nuclear mobility as well as increased DNA binding capacity leading to the up-regulation of hypoxia-adaptive genes. Our findings indicate that the status of the ERK pathway has significant impacts on the molecular adaptation of hBMSCs to the hypoxic milieu.
      261Scopus© Citations 17
  • Publication
    Doxorubicin induces the DNA damage response in cultured human mesenchymal stem cells
    Anthracyclines, including doxorubicin, are widely used in the treatment of leukemia. While the effects of doxorubicin on hematopoietic cells have been characterized, less is known about the response of human mesenchymal stem cells (hMSCs) in the bone marrow stroma to anthracyclines. We characterized the effect of doxorubicin on key DNA damage responses in hMSCs, and compared doxorubicin sensitivity and DNA damage response activation between isolated hMSCs and the chronic myelogenous leukemia cell line, K562. Phosphorylation of H2AX, Chk1, and RPA2 was more strongly activated in K562 cells than in hMSCs, at equivalent doses of doxorubicin. hMSCs were relatively resistant to doxorubicin such that, following exposure to 15 μM doxorubicin, the level of cleaved caspase-3 detected by western blotting was lower in hMSCs compared to K562 cells. Flow cytometric analysis of cell cycle progression demonstrated that exposure to doxorubicin induced G2/M phase arrest in hMSCs, while 48 h after exposure, 15.6 % of cells were apoptotic, as determined from the percentage of cells having sub-G1 DNA content. We also show that the doxorubicin sensitivity of hMSCs isolated from a healthy donor was comparable to that of hMSCs isolated from a chronic lymphocytic leukemia patient. Overall, our results demonstrate that high doses of doxorubicin induce the DNA damage response in hMSCs, and that cultured hMSCs are relatively resistant to doxorubicin.
      1465Scopus© Citations 35
  • Publication
    Isolation and Phenotypic Characterisation of Stem Cells from Late Stage Osteoarthritic Mesenchymal Tissues
    Introduction: Osteoarthritis (OA) represents an increasing health issue worldwide. Regenerative medicine (RM) has raised the hope for introducing revolutionary therapies in clinical practice. Detection of autologus cell sources can improve accessibility to RM strategies. Objectives: To assess the presence and biological potential of mesehchymal stem cells in three tissues (subchondral bone, synovial layer, periarticular adipose tissue) in late stages osteoarthritic patients. Material and Methods: Samples were collected from subjects undergoing total knee replacement (TKR). MSCs were isolated and cultured in complete αMEM with β FGF. Cell morphology and growth potential was assessed. Flow cytometry was used for detection of several relevant cell surface markers. Quantitative and qualitative assessment of differentiation potential towards three mesenchymal lineages (osteogenesis adipogenesis chondrogenesis) was performed. Time lapse life cell imaging of nondiferentiated cells over 24 hours period was used to determine cell kinetics. Results: Mesenchymal cells derived from all donors and tissue types showed morphology, growth and surface cell markers associated with stemness. All cell types underwent differentiation toward three mesenchymal lineages with significant differences between tissues of origin, not between donors. Cell kinetics, as derived from life imaging records, was variable with tissue of origin, significant higher for adipose derived MSCS. Conclusion: Human late stage OA mesenchymal tissues, contain progenitors with proliferative and differentiation potential of MSCs. These populations can be used for research and autologus regenerative therapies. Further comparative studies with age matched non OA samples has the potential of contributing to deepening knowledge about disease occurrence and progression.
      808Scopus© Citations 6
  • Publication
    ROCK activity and the Gβγ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells
    Bone marrow-derived stromal cells (BMSCs), also known as mesenchymal stem cells, are the focus of intensive efforts worldwide to elucidate their function and biology. Despite the importance of BMSC migration for their potential therapeutic uses, the mechanisms and signalling governing stem cell migration are still not fully elucidated. Methods: We investigated and detailed the effects of MCP-1 activation on BMSCs by using inhibitors of G protein-coupled receptor alpha beta (GPCR αβ), ROCK (Rho-associated, coiled-coil containing protein kinase), and PI3 kinase (PI3K). The effects of MCP-1 stimulation on intracellular signalling cascades were characterised by using immunoblotting and immunofluorescence. The effectors of MCP-1-mediated migration were investigated by using migration assays (both two-dimensional and three-dimensional) in combination with inhibitors. Results: We established the kinetics of the MCP-1-activated signalling cascade and show that this cascade correlates with cell surface re-localisation of chemokine (C motif) receptor 2 (CCR2) (the MCP-1 receptor) to the cell periphery following MCP-1 stimulation. We show that MCP-1-initiated signalling is dependent on the activation of βγ subunits from the GPCR αβγ complex. In addition, we characterise a novel role for PI3Kγ signalling for the activation of both PAK and ERK following MCP-1 stimulation. We present evidence that the Gβγ complex is responsible for PI3K/Akt, PAK, and ERK signalling induced by MCP-1 in BMSCs. Importantly, we found that, in BMSCs, inhibition of ROCK significantly inhibits MCP-1-induced chemotactic migration, in contrast to previous reports in other systems.Conclusions: Our results indicate differential chemotactic signalling in mouse BMSCs, which has important implications for the translation of in vivo mouse model findings into human trials. We identified novel components and interactions activated by MCP-1-mediated signalling, which are important for stem cell migration. This work has identified additional potential therapeutic targets that could be manipulated to improve BMSC delivery and homing.
      327Scopus© Citations 14