Options
Cunningham, Pádraig
Preferred name
Cunningham, Pádraig
Official Name
Cunningham, Pádraig
Research Output
Now showing 1 - 10 of 69
- PublicationAn Evaluation of One-Class Classification Techniques for Speaker Verification(University College Dublin. School of Computer Science and Informatics, 2007-08-13)
; ; Speaker verification is a challenging problem in speaker recognition where the objective is to determine whether a segment of speech in fact comes from a specific individual. In supervised machine learning terms this is a challenging problem as, while examples belonging to the target class are easy to gather, the set of counterexamples is completely open. In this paper we cast this as a one-class classification problem and evaluate a variety of state-of-the-art one-class classification techniques on a benchmark speech recognition dataset. We show that of the one-class classification techniques, Gaussian Mixture Models shows the best performance on this task.97 - PublicationAdaptive Representations for Tracking Breaking News on Twitter(2014-08-27)
; ; Twitter is often the most up-to-date source for finding and tracking breaking news stories. Therefore, there is considerable interest in developing filters for tweet streams in order to track and summarize stories. This is a non-trivial text analytics task as tweets are short,and standard text similarity metrics often fail as stories evolve over time. In this paper we examine the effectiveness of adaptive text similarity mechanisms for tracking and summarizing breaking news stories. We evaluate the effectiveness of these mechanisms on a number of recent news events for which manually curated timelines are available. Assessments based on the ROUGE metric indicate that an adaptive similarity mechanism is best suited for tracking evolving stories on Twitter.100 - PublicationDimensionality Reduction and Visualisation Tools for Voting Record(CEUR Workshop Proceedings, 2016-09-21)
; ; ; Recorded votes in legislative bodies are an important source of data for political scientists. Voting records can be used to describe parliamentary processes, identify ideological divides between members and reveal the strength of party cohesion. We explore the problem of working with vote data using popular dimensionality reduction techniques and cluster validation methods, as an alternative to more traditional scaling techniques. We present results of dimensionality reduction techniques applied to votes from the 6th and 7th European Parliaments, covering activity from 2004 to 2014.230 - PublicationAn Analysis of Current Trends in CBR Research Using Multi-View Clustering(University College Dublin. School of Computer Science and Informatics, 2009-03)
; ; ; The European Conference on Case-Based Reasoning (CBR) in 2008 marked 15 years of international and European CBR conferences where almost seven hundred research papers were published. In this report we review the research themes covered in these papers and identify the topics that are active at the moment. The main mechanism for this analysis is a clustering of the research papers based on both co-citation links and text similarity. It is interesting to note that the core set of papers has attracted citations from almost three thousand papers outside the conference collection so it is clear that the CBR conferences are a sub-part of a much larger whole. It is remarkable that the research themes revealed by this analysis do not map directly to the sub-topics of CBR that might appear in a textbook. Instead they reflect the applications-oriented focus of CBR research, and cover the promising application areas and research challenges that are faced.60 - PublicationIdentifying representative textual sources in blog networks(University College Dublin. School of Computer Science and Informatics, 2011-02)
; ; ; ; We apply methods from social network analysis and visualization to facilitate a study of the Irish blogosphere from a cultural studies perspective. We focus on solving the practical issues that arise when the goal is to perform textual analysis of the corpus produced by a network of bloggers. Previous studies into blogging networks have noted difficulties arising when trying to identify the extent and boundaries of these networks. As a response to calls for increasingly data-led approaches in media and cultural studies, we discuss a variety of social network analysis methods that can be used to identify which blogs can be seen as members of a posited "Irish blogging network". We identify hub blogs, communities of sites corresponding to different topics, and representative bloggers within these communities. Based on this study, we propose a set of analysis guidelines for researchers who wish to map out blogging networks.2842 - PublicationExploring the Relationship between Membership Turnover and Productivity in Online Communities(Association for the Advancement of Artificial Intelligence, 2014-06-04)
; ; One of the more disruptive reforms associated with the modern Internet is the emergence of online communities working together on knowledge artefacts such as Wikipedia and OpenStreetMap. Recently it has become clear that these initiatives are vulnerable because of problems with membership turnover. This study presents a longitudinal analysis of 891 Wiki Projects where we model the impact of member turnover and social capital losses on project productivity. By examining social capital losses we attempt to provide a more nuanced analysis of member turnover. In this context social capital is modelled from a social network perspective where the loss of more central members has more impact. We find that only a small proportion of Wiki Projects are in a relatively healthy state with low levels of membership turnover and social capital losses.The results show that the relationship between social capital losses and project performance is U-shaped, and that member withdrawal has significant negative effect on project outcomes. The results also support the mediation of turnover rate and network density on the curvilinear relationship.101 - PublicationDetecting Attention Dominating Moments Across Media TypesIn this paper we address the problem of identifying attention dominating moments in online media. We are interested in discovering moments when everyone seems to be talking about the same thing. We investigate one particular aspect of breaking news: the tendency of multiple sources to concentrate attention on a single topic, leading to a collapse in diversity of content for a period of time. In this work we show that diversity at a topic level is effective for capturing this effect in blogs, in news articles, and on Twitter. The phenomenon is present in three distinctly different media types, each with their own unique features. We describe the phenomenon using case studies relating to major news stories from September 2015.
132 - PublicationA Spectral Co-Clustering Approach for Dynamic Data(University College Dublin. School of Computer Science and Informatics, 2011-08)
; A common task in many domains with a temporal aspect involves identifying and tracking clusters over time. Often dynamic data will have a feature-based representation. In some cases, a direct mapping will exist for both objects and features over time. But in many scenarios, smaller subsets of objects or features alone will persist across successive time periods. To address this issue, we propose a dynamic spectral co-clustering algorithm for simultaneously clustering objects and features over time, as represented by a set of related bipartite graphs. We evaluate the algorithm on several synthetic datasets, a benchmark text corpus, and social bookmarking data.32 - PublicationSpectral co-clustering for dynamic bipartite graphsA common task in many domains with a temporal aspect involves identifying and tracking clusters over time. Often dynamic data will have a feature-based representation. In some cases, a direct mapping will exist for both objects and features over time. But in many scenarios, smaller subsets of objects or features alone will persist across successive time periods. To address this issue, we propose a dynamic spectral co-clustering method for simultaneously clustering objects and features over time, as represented by successive bipartite graphs. We evaluate the method on a benchmark text corpus and Web 2.0 tagging data.
461 - PublicationAn Ensemble Approach to Identifying Informative Constraints for Semi-Supervised Clustering(University College Dublin. School of Computer Science and Informatics, 2007-05-04)
; A number of clustering algorithms have been proposed for use in tasks where a limited degree of supervision is available. This prior knowledge is frequently provided in the form of pairwise must-link and cannot-link constraints. While the incorporation of pairwise supervision has the potential to improve clustering accuracy, the composition and cardinality of the constraint sets can significantly impact upon the level of improvement. We demonstrate that it is often possible to correctly “guess” a large number of constraints without supervision from the coassociations between pairs of objects in an ensemble of clusterings. Along the same lines, we establish that constraints based on pairs with uncertain co-associations are particularly informative, if known. An evaluation on text data shows that this provides an effective criterion for identifying constraints, leading to a reduction in the level of supervision required to direct a clustering algorithm to an accurate solution.24