Now showing 1 - 2 of 2
  • Publication
    RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis
    The nonsense mediated decay (NMD) pathway is a critical surveillance mechanism for identifying aberrant mRNA transcripts. It is unknown, however, whether the NMD system is affected by seizures in vivo and whether changes confer beneficial or maladaptive responses that influence long-term outcomes such the network alterations that produce spontaneous recurrent seizures. Here we explored the responses of the NMD pathway to prolonged seizures (status epilepticus) and investigated the effects of NMD inhibition on epilepsy in mice. Status epilepticus led to increased protein levels of Up-frameshift suppressor 1 homolog (Upf1) within the mouse hippocampus. Upf1 protein levels were also higher in resected hippocampus from patients with intractable temporal lobe epilepsy. Immunoprecipitation of Upf1-bound RNA from the cytoplasmic and synaptosomal compartments followed by RNA sequencing identified unique populations of NMD-associated transcripts and altered levels after status epilepticus, including known substrates such as Arc as well as novel targets including Inhba and Npas4. Finally, long-term video-EEG recordings determined that pharmacologic interference in the NMD pathway after status epilepticus reduced the later occurrence of spontaneous seizures in mice. These findings suggest compartment-specific recruitment and differential loading of transcripts by NMD pathway components may contribute to the process of epileptogenesis.
      277Scopus© Citations 13
  • Publication
    Hippocampal contribution to vector model hypothesis during cue-dependent navigation
    (Cold Spring Harbor Laboratory Press, 2013-06-17) ; ;
    Learning to navigate toward a goal is an essential skill. Place learning is thought to rely on the ability of animals to associate the location of a goal with surrounding environmental cues. Using the Morris water maze, a task popularly used to examine place learning, we demonstrate that distal cues provide animals with distance and directional information. We show how animals use the cues in a visually dependent guidance manner to find the goal. Further, we demonstrate how hippocampal lesions disrupt this learning mechanism. Our results can be explained through the vector model of navigation built on associative learning principles rather than evoking a cognitive map.
      347Scopus© Citations 10