Now showing 1 - 4 of 4
  • Publication
    Biological recognition of graphene nanoflakes
    The systematic study of nanoparticle-biological interactions requires particles to be reproducibly dispersed in relevant fluids along with further development in the identification of biologically relevant structural details at the materials-biology interface. Here, we develop a biocompatible long-term colloidally stable water dispersion of few-layered graphene nanoflakes in the biological exposure medium in which it will be studied. We also report the study of the orientation and functionality of key proteins of interest in the biolayer (corona) that are believed to mediate most of the early biological interactions. The evidence accumulated shows that graphene nanoflakes are rich in effective apolipoprotein A-I presentation, and we are able to map specific functional epitopes located in the C-terminal portion that are known to mediate the binding of high-density lipoprotein to binding sites in receptors that are abundant in the liver. This could suggest a way of connecting the materials' properties to the biological outcomes.
      311Scopus© Citations 59
  • Publication
    Ordered Surface Structuring of Spherical Colloids with Binary Nanoparticle Superlattices
    Surface-patterning colloidal matter in the sub-10 nm regime generates exceptional functionality in biology and photonic and electronic materials. Techniques of artificially generating functional patterns in the small nanoscale advanced in a fascinating manner in the last several years. However, they remain often restricted to planar and noncolloidal substrates. Patterning colloidal matter in solution via bottom-up assembly of smaller subunits on larger core particles is highly challenging because it is necessary to force the subunits onto randomly moving objects. Consequently, the non-equilibrium conditions present during nanoparticle self-assembly are difficult to control to eventually achieve the desired material structures. Here, we describe the formation of surface patterns with intrinsic periodic repeats of 8.9 ± 0.9 nm and less on hard, amorphous colloidal core particles by assembling binary nanoparticle superlattices on the curved particle surface. The colloidal environment is preserved during the entire bottom-up crystallization of variable building blocks (here, monodispersed 5 nm Au and 2.4 nm Pd nanoparticles (NPs) and 230 nm SiO core particles) into AB -like, binary, and isotropic superlattice domains on the amorphous cores. The three-dimensional, bottom-up assembly technique is a new tool for patterning colloidal matter in the sub-10 nm surface regime for gaining access to multicomponent metamaterials for bionanoscience, photonics, and electronics. 2 13
      108Scopus© Citations 11
  • Publication
    Locating Reactive Groups on Nanomaterials with Gold Nanoclusters: Toward a Surface Reactive Site Map
    Nanoparticles (NPs) are often functionalized with reactive groups like amines or thiols for the subsequent conjugation of further molecules, e.g., stabilizing polymers, drugs and proteins or targeting cells or specific diseases, etc. In addition to the quantitative estimation of the reactive conjugation sites, their nanoscale and molecular positioning and local arrangement on single nanoparticles becomes more and more important for tailored engineering and design of functional nanomaterials. Here, we use maleimide or sulfo-succinimidyl ester modified 1.4 nm gold nanoclusters (AuNCs) to specifically label reactive thiol and amine groups with sub –2 nm precision on metal oxide and polymeric nanostructures. We confirm the binding of AuNCs by measuring and modelling sedimentation properties using analytical centrifugation, image their surface distribution and surface distances by transmission electron microscopy (TEM), and compare the results to ensemble measurements of numbers of reactive surface groups obtained by common photometric assays. We map thiol and amine groups introduced on silica NPs (SiNPs), titania stars (Ti), silica inverse opals (SiOps), and polystyrene NPs (PS NPs). We show that the method is suitable to map local, clustered inhomogeneities of the reactive sites on single SiNPs introduced by masking certain areas during surface functionalization. Mapping precise positions of reactive surface groups is essential for the design and the tailored ligation of multifunctional nanomaterials.
      350Scopus© Citations 1
  • Publication
    Synthesis, characterization and programmable toxicity of iron oxide nanoparticles conjugated with D-amino acid oxidase
    D-amino acid oxidase (DAAO) is an enzyme which generates reactive oxygen species (ROS) and it is believed to have potential uses as a novel therapeutic molecule if internalized by cancer cells or if they are localized close to their plasma membrane. When conjugated onto iron oxide nanoparticles (NPs), the enzyme can be magnetically directed to targeted locations with an increased efficacy. A subsequent injection of DAAO substrate D-alanine can initiate ROS production and induce apoptosis of cells surrounding the NP-DAAO complex. Here, we describe a platform for optimal bioconjugation using monodisperse γ-Fe2O3 NPs (∼10 nm) resulting in high DAAO loading, stable NP-DAAO dispersions and more than 90% enzymatic activity recovery, which is retained using the particles in human serum. Lastly, since the NP-DAAO system is designed for cancer therapy, we proved its efficacy in killing SKOV-3, U87 and HCT-116 cancer cells.
      190Scopus© Citations 10