Now showing 1 - 4 of 4
  • Publication
    Continuous Flow Synthesis of Quinolines via a Scalable Tandem Photoisomerization-Cyclization Process
    A continuous photochemical process is presented that renders a series of quinoline products via an alkene isomerization and cyclocondensation cascade. It is demonstrated that a high-power LED lamp generates the desired targets with higher productivity and efficiency than a medium-pressure Hg-lamp. The scope of this tandem process is established and allows for the generation of various substituted quinolines in high yields and with throughputs of greater than one gram per hour. Finally, this effective flow process is coupled with a telescoped hydrogenation reaction to render a series of tetrahydroquinolines including the antimalarial natural product galipinine.
    Scopus© Citations 25  274
  • Publication
    A Scalable Continuous Photochemical Process for the Generation of Aminopropylsulfones
    (Royal Society of Chemistry, 2020-09-18) ; ;
    An efficient continuous photochemical process is presented that delivers a series of novel γ-aminopropylsulfones via a tetrabutylammonium decatungstate (TBADT) catalysed HAT-process. Crucial to this success is the exploitation of a new high-power LED emitting at 365 nm that was found to be superior to an alternative medium-pressure Hg lamp. The resulting flow process enabled the scale-up of this transformation reaching throughputs of 20 mmol h−1 at substrate concentrations up to 500 mM. Additionally, the substrate scope of this transformation was evaluated demonstrating the straightforward incorporation of different amine substituents as well as alkyl appendages next to the sulfone moiety. It is anticipated that this methodology will allow for further exploitations of these underrepresented γ-aminopropylsulfone scaffolds in the future.
    Scopus© Citations 16  277
  • Publication
    Discovery of a photochemical cascade process by flow-based interception of isomerising alkenes
    Herein we report the discovery of a new photochemical cascade process through a flow-based strategy for intercepting diradicals generated from simple alkenes. This continuous process delivers a series of unprecedented polycyclic reaction products. Exploring the scope of this novel process revealed that this approach is general and affords a variety of structurally complex reaction products in high yields (up to 81%), short reaction times (7 min) and high throughputs (up to 5.5 mmol h−1). A mechanistic rationale is presented that is supported by computations as well as isolation of key intermediates whose identity is confirmed by X-ray crystallography. The presented photochemical cascade process demonstrates the discovery of new chemical reactivity and complex chemical scaffolds by continuously generating and intercepting high-energy intermediates in a highly practical manner.
      81Scopus© Citations 12
  • Publication
    Continuous flow photochemistry for the preparation of bioactive molecules
    The last decade has witnessed a remarkable development towards improved and new photochemical transformations in response to greener and more sustainable chemical synthesis needs. Additionally, the availability of modern continuous flow reactors has enabled widespread applications in view of more streamlined and custom designed flow processes. In this focused review article, we wish to evaluate the standing of the field of continuous flow photochemistry with a specific emphasis on the generation of bioactive entities, including natural products, drugs and their precursors. To this end we highlight key developments in this field that have contributed to the progress achieved to date. Dedicated sections present the variety of suitable reactor designs and set-ups available; a short discussion on the relevance of greener and more sustainable approaches; and selected key applications in the area of bioactive structures. A final section outlines remaining challenges and areas that will benefit from further developments in this fast-moving area. It is hoped that this report provides a valuable update on this important field of synthetic chemistry which may fuel developments in the future.
    Scopus© Citations 76  170