Now showing 1 - 10 of 44
  • Publication
    The Relationship between Fish Intake and Urinary Trimethylamine-N-Oxide
    Scope: Fish intake is reported to be associated with certain health benefits; however, accurate assessment of fish intake is still problematic. The objective of this study is to identify fish intake biomarkers and examine relationships with health parameters in a free‐living population. Methods and results: In the NutriTech study, ten participants randomized into the fish group consume increasing quantities of fish for 3 days per week for 3 weeks. Urine is analyzed by NMR spectroscopy. Trimethylamine‐N‐oxide (TMAO), dimethylamine, and dimethyl sulfone are identified and display significant dose–response with intake (p < 0.05). Fish consumption yields a greater increase in urinary TMAO compared to red meat. Biomarker‐derived fish intake is calculated in the National Adult Nutrition Survey cross‐sectional study. However, the correlation between fish intake and TMAO (r = 0.148, p < 0.01) and that between fish intake and calculated fish intake (r = 0.142, p < 0.01) are poor. In addition, TMAO shows significantly positive correlation with serum insulin and insulin resistance in males and the relationship is more pronounced for males with high dietary fat intake. Conclusion: Urinary TMAO displays a strong dose–response relationship with fish intake; however, use of TMAO alone is insufficient to determine fish intake in a free‐living population.
    Scopus© Citations 23  253
  • Publication
    Metabotyping and its role in nutrition research
    (Cambridge University Press, 2020-06) ;
    Personalised nutrition is at its simplest form the delivery of dietary advice at an individual level. Incorporating response to different diets has resulted in the concept of precision nutrition. Harnessing the metabolic phenotype to identify subgroups of individuals that respond differentially to dietary interventions is becoming a reality. More specifically, the classification of individuals in subgroups according to their metabolic profile is defined as metabotyping and this approach has been employed to successfully identify differential response to dietary interventions. Furthermore, the approach has been expanded to develop a framework for the delivery of targeted nutrition. The present review examines the application of the metabotype approach in nutrition research with a focus on developing personalised nutrition. Application of metabotyping in longitudinal studies demonstrates that metabotypes can be associated with cardiometabolic risk factors and diet-related diseases while application in interventions can identify metabotypes with differential responses. In general, there is strong evidence that metabolic phenotyping is a promising strategy to identify groups at risk and to potentially improve health promotion at a population level. Future work should verify if targeted nutrition can change behaviours and have an impact on health outcomes.
      890Scopus© Citations 26
  • Publication
    Capturing health and eating status through a Nutritional Perception Screening Questionnaire (NPSQ9) in a randomised internet-based Personalised Nutrition intervention: the Food4Me study
    Background: National guidelines emphasize healthy eating to promote wellbeing and prevention of non-communicable diseases. The perceived healthiness of food is determined by many factors affecting food intake. A positive perception of healthy eating has been shown to be associated with greater diet quality. Internet-based methodologies allow contact with large populations. Our present study aims to design and evaluate a short nutritional perception questionnaire, to be used as a screening tool for assessing nutritional status, and to predict an optimal level of personalisation in nutritional advice delivered via the Internet. Methods: Data from all participants who were screened and then enrolled into the Food4Me proof-of-principle study (n = 2369) were used to determine the optimal items for inclusion in a novel screening tool, the Nutritional Perception Screening Questionnaire-9 (NPSQ9). Exploratory and confirmatory factor analyses were performed on anthropometric and biochemical data and on dietary indices acquired from participants who had completed the Food4Me dietary intervention (n = 1153). Baseline and intervention data were analysed using linear regression and linear mixed regression, respectively. Results: A final model with 9 NPSQ items was validated against the dietary intervention data. NPSQ9 scores were inversely associated with BMI (β = −0.181, p < 0.001) and waist circumference (Β = −0.155, p < 0.001), and positively associated with total carotenoids (β = 0.198, p < 0.001), omega-3 fatty acid index (β = 0.155, p < 0.001), Healthy Eating Index (HEI) (β = 0.299, p < 0.001) and Mediterranean Diet Score (MDS) (β = 0. 279, p < 0.001). Findings from the longitudinal intervention study showed a greater reduction in BMI and improved dietary indices among participants with lower NPSQ9 scores. Conclusions: Healthy eating perceptions and dietary habits captured by the NPSQ9 score, based on nine questionnaire items, were associated with reduced body weight and improved diet quality. Likewise, participants with a lower score achieved greater health improvements than those with higher scores, in response to personalised advice, suggesting that NPSQ9 may be used for early evaluation of nutritional status and to tailor nutritional advice.
      681Scopus© Citations 11
  • Publication
    Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort
    The identification of an early biomarker of psychotic disorder is important as early treatment is associated with improved patient outcome. Metabolomic and lipidomic approaches in combination with multivariate statistical analysis were applied to identify plasma alterations in children (age 11) (38 cases vs 67 controls) and adolescents (age 18) (36 cases vs 117 controls) preceeding or coincident with the development of psychotic disorder (PD) at age 18 in the Avon Longitudinal Study of Parents and Children (ALSPAC). Overall, 179 lipids were identified at age 11, with 32 found to be significantly altered between the control and PD groups. Following correction for multiple comparisons, 8 of these lipids remained significant (lysophosphatidlycholines (LPCs) LPC(18:1), LPC(18:2), LPC(20:3); phosphatidlycholines (PCs) PC(32:2; PC(34:2), PC(36:4), PC(0-34-3) and sphingomyelin (SM) SM(d18:1/24:0)), all of which were elevated in the PD group. At age 18, 23 lipids were significantly different between the control and PD groups, although none remained significant following correction for multiple comparisons. In conclusion, the findings indicate that the lipidome is altered in the blood during childhood, long before the development of psychotic disorder. LPCs in particular are elevated in those who develop PD, indicating inflammatory abnormalities and altered phospholipid metabolism. These findings were not found at age 18, suggesting there may be ongoing alterations in the pathophysiological processes from prodrome to onset of PD.
      635Scopus© Citations 36
  • Publication
    Probabilistic principal component analysis for metabolomic data
    Background: Data from metabolomic studies are typically complex and high-dimensional. Principal component analysis (PCA) is currently the most widely used statistical technique for analyzing metabolomic data. However, PCA is limited by the fact that it is not based on a statistical model. Results: Here, probabilistic principal component analysis (PPCA) which addresses some of the limitations of PCA, is reviewed and extended. A novel extension of PPCA, called probabilistic principal component and covariates analysis (PPCCA), is introduced which provides a flexible approach to jointly model metabolomic data and additional covariate information. The use of a mixture of PPCA models for discovering the number of inherent groups in metabolomic data is demonstrated. The jackknife technique is employed to construct confidence intervals for estimated model parameters throughout. The optimal number of principal components is determined through the use of the Bayesian Information Criterion model selection tool, which is modified to address the high dimensionality of the data. Conclusions: The methods presented are illustrated through an application to metabolomic data sets. Jointly modeling metabolomic data and covariates was successfully achieved and has the potential to provide deeper insight to the underlying data structure. Examination of confidence intervals for the model parameters, such as loadings, allows for principled and clear interpretation of the underlying data structure. A software package called MetabolAnalyze, freely available through the R statistical software, has been developed to facilitate implementation of the presented methods in the metabolomics field.
      537Scopus© Citations 113
  • Publication
    Combining biomarker and food intake data: calibration equations for citrus intake
    BACKGROUND:Measurement error associated with self-reported dietary intake is a well-documented issue. Combining biomarkers of food intake and dietary intake data is a high priority. OBJECTIVES:The objective of this study was to develop calibration equations for food intake, illustrated with an application for citrus intake. Further, a simulation-based framework was developed to determine the portion of biomarker data needed for stable calibration equation estimation in large population studies. METHODS:Calibration equations were developed using mean daily self-reported citrus intake (4-d semiweighed food diaries) and biomarker-derived intake (urinary proline betaine biomarker) data from participants (n = 565) as part of a cross-sectional study. Different functional specifications and biomarker transformations were tested to derive the optimal calibration equation specifications. The simulation study was developed using linear regression for the calibration equations. Stability in the calibration equation estimations was investigated for varying portions of biomarker and intake data "qualities." RESULTS:With citrus intake, linear regression on nontransformed biomarker data resulted in the optimal calibration equation specifications and produced good-quality predicted intakes. The lowest mean squared error (14,354) corresponded to a linear regression model, defined with biomarker-derived estimates of intakes on the original scale. Using this model in a subpopulation without biomarker data resulted in an average mean ± SD citrus intake of 81 ± 66 g/d. The simulation study suggested that in large population studies, biomarker data on 20-30% of the subjects are required to guarantee stable estimation of calibration equations. This article is accompanied by a web application ("Bio-Intake"), which was developed to facilitate measurement error correction in self-reported mean daily citrus intake data. CONCLUSIONS:Calibration equations proved to be a useful instrument to correct measurement error in self-reported food intake data. The simulation study demonstrated that the use of food intake biomarkers may be feasible and beneficial in the context of large population studies.
      425Scopus© Citations 11
  • Publication
    Use of metabotyping for optimal nutrition
    (Elsevier, 2017-04)
    In recent years there has been general agreement that dietary advice needs to be tailored to the individual and that we need to move from a one size fits all approach. Evidence has emerged that personalising dietary advice results in improved dietary behaviours. Concomitant with this there has been an increase in the application of developing technologies such as metabolomics to nutrition studies. The concept of the metabotype has emerged and set to play a key role in the development and delivery or personalised nutrition. The term metabotype refers to a group of individuals with similar metabolic profiles. This review gives an overview of the potential role of this approach in delivering optimal nutrition advice.
      606Scopus© Citations 34
  • Publication
    Inferring food intake from multiple biomarkers using a latent variable model
    (Institute of Mathematical Statistics, 2021-12) ; ;
    Metabolomic based approaches have gained much attention in recent years due to their promising potential to deliver objective tools for assessment of food intake. In particular, multiple biomarkers have emerged for single foods. However, there is a lack of statistical tools available for combining multiple biomarkers to quantitatively infer food intake. Furthermore, there is a paucity of approaches for estimating the uncertainty around biomarker-based inferred intake. Here, to estimate the relationship between multiple metabolomic biomarkers and food intake in an intervention study conducted under the A-DIET research programme, a latent variable model, multiMarker, is proposed. The multiMarker model integrates factor analytic and mixture of experts models: the observed biomarker values are related to intake which is described as a continuous latent variable which follows a flexible mixture of experts model with Gaussian components. The multiMarker model also facilitates inference on the latent intake when only biomarker data are subsequently observed. A Bayesian hierarchical modelling framework provides flexibility to adapt to different biomarker distributions and facilitates inference of the latent intake along with its associated uncertainty. Simulation studies are conducted to assess the performance of the multiMarker model, prior to its application to the motivating application of quantifying apple intake.
      86Scopus© Citations 2
  • Publication
    Metabolomics in nutrition research – a powerful window into nutritional metabolism
    (Portland Press, 2017-01)
    Metabolomics is the study of small molecules present in biological samples. In recent years it has become evident that such small molecules, called metabolites, play a key role in the development of disease states. Furthermore, metabolomic applications can reveal information about alterations in certain metabolic pathways under different conditions. Data acquisition in metabolomics is usually performed using nuclear magnetic resonance (NMR)-based approaches or mass spectrometry (MS)-based approaches with a more recent trend including the application of multiple platforms in order to maximise the coverage in terms of metabolites measured. The application of metabolomics is rapidly increasing and the present review will highlight applications in nutrition research.
      473Scopus© Citations 23