Now showing 1 - 10 of 13
  • Publication
    Biomolecular coronas provide the biological identity of nanosized materials
    The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the environment. Unless they are specifically designed to avoid it, nanoparticles in contact with biological fluids are rapidly covered by a selected group of biomolecules to form a corona that interacts with biological systems. Here we review the basic concept of the nanoparticle corona and its structure and composition, and highlight how the properties of the corona may be linked to its biological impacts. We conclude with a critical assessment of the key problems that need to be resolved in the near future.
      3483Scopus© Citations 2167
  • Publication
    Theoretical framework for nanoparticle uptake and accumulation kinetics in dividing cell populations
    Nano-sized objects interact with biological systems in fundamentally novel ways, thereby holding great promise for targeted drug delivery. It has also been suggested they could constitute a hitherto unseen hazard. Numerous experimental studies in the field are taking place. We consider that the nature of the interactions allows a more fundamental theoretical framework to be developed. In particular, we describe the intimate link that develops between nanoparticle uptake and cell population evolution. Explicit analytical results are given and the theory compared to experimental observations.
      534Scopus© Citations 28
  • Publication
    Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells
    Nanoparticles enter cells through active processes, thanks to their capability of interacting with the cellular machinery. The protein layer (corona) that forms on their surface once nanoparticles are in contact with biological fluids, such as the cell serum, mediates the interactions with cells in situ. As a consequence of this, here we show that the same nanomaterial can lead to very different biological outcomes, when exposed to cells in the presence or absence of a preformed corona. In particular, silica nanoparticles exposed to cells in the absence of serum have a stronger adhesion to the cell membrane and higher internalization efficiency, in comparison to what is observed in medium containing serum, when a preformed corona is present on their surface. The different exposure conditions not only affect the uptake levels but also result in differences in the intracellular nanoparticle location and impact on cells. Interestingly, we also show that after only one hour of exposure, a corona of very different nature forms on the nanoparticles exposed to cells in the absence of serum. Evidence suggests that these different outcomes can all be connected to the different adhesion and surface properties in the two conditions.
      2729Scopus© Citations 886
  • Publication
    Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest
    The interaction of nanoscaled materials with biological systems is currently the focus of a fast-growing area of investigation. Though many nanoparticles interact with cells without acute toxic responses, amino-modified polystyrene nanoparticles are known to induce cell death. We have found that by lowering their dose, cell death remains low for several days while, interestingly, cell cycle progression is arrested. In this scenario, nanoparticle uptake, which we have recently shown to be affected by cell cycle progression, develops differently over time due to the absence of cell division. This suggests that the same nanoparticles can trigger different pathways depending on exposure conditions and the dose accumulated.
      713Scopus© Citations 80
  • Publication
    Lipid phase behaviour under steady state conditions
    (Royal Society of Chemistry, 2012-06-04) ; ;
    At the interface between two regions, for example the air–liquid interface of a lipid solution, there can arise non-equilibrium situations. The water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential of the solution, and the gradients in chemical potential cause diffusional flows. If the bulk water chemical potential is close to a phase transition, there is the possibility of forming an interfacial phase with structures qualitatively different from those found in the bulk. Based on a previous analysis of this phenomenon in two component systems (C. Åberg, E. Sparr, K. J. Edler and H. Wennerström, Langmuir, 2009, 25, 12177), we here analyse the phenomenon for three-component systems. The relevant transport equations are derived, and explicit results are given for some limiting cases. Then the formalism is applied conceptually to four different aqueous lipid systems, which in addition to water and a phospholipid contain (i) octyl glucoside, (ii) urea, (iii) heavy water, and (iv) sodium cholate as the third component. These four cases are chosen to illustrate (i) a method to use a micelle former to transport lipid to the interface where a multi-lamellar structure can form; (ii) to use a co-solvent to inhibit the formation of a gel phase at the interface; (iii) a method to form pure phospholipid multi-lamellar structures at the interface; (iv) a method to form a sequence of phases in the interfacial region. These four cases all have the character of theoretically based conjectures and it remains to investigate experimentally whether or not the conditions can be realized in practice.
      442Scopus© Citations 8
  • Publication
    Experimental and theoretical approach to comparative nanoparticle and small molecule intracellular import, trafficking, and export
    Central to understanding how nanoscale objects interact with living matter is the need for reproducible and verifiable data that can be interpreted with confidence. Likely this will be the basis of durable advances in nanomedicine and nanomedical safety. To develop these fields, there is also considerable interest in advancing the first generation of theoretical models of nanoparticle (NP) uptake into cells, and NP biodistribution in general. Here we present an uptake study comparing the outcomes for free molecular dye and NPs labeled with the same dye. A simple flux-based approach is presented to model NP uptake. We find that the intracellular NP concentration grows linearly in time, and that the uptake is essentially irreversible, with the particles accumulating in lysosomes. A wide range of practical challenges, from labile dye release to NP aggregation and the need to account for cell division, are addressed to ensure that these studies yield meaningful kinetic information.
      1564Scopus© Citations 272
  • Publication
    Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
    Nanoparticles have been proposed as carriers for drugs, genes and therapies to treat various diseases1, 2. Many strategies have been developed to target nanomaterials to specific or over-expressed receptors in diseased cells, and these typically involve functionalizing the surface of nanoparticles with proteins, antibodies or other biomolecules. Here, we show that the targeting ability of such functionalized nanoparticles may disappear when they are placed in a biological environment. Using transferrin-conjugated nanoparticles, we found that proteins in the media can shield transferrin from binding to both its targeted receptors on cells and soluble transferrin receptors. Although nanoparticles continue to enter cells, the targeting specificity of transferrin is lost. Our results suggest that when nanoparticles are placed in a complex biological environment, interaction with other proteins in the medium and the formation of a protein corona3, 4 can ‘screen’ the targeting molecules on the surface of nanoparticles and cause loss of specificity in targeting.
      3115Scopus© Citations 1479
  • Publication
    Nanoparticle Adhesion to the Cell Membrane and Its effect on Nanoparticle Uptake Efficiency
    The interactions between nanosized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its biomolecular corona, rather than the pristine surface. Here, we characterize the adhesion toward the cell membrane of nanoparticles of different material and size and study how this is modulated by the presence or absence of a corona on the nanoparticle surface. The results are corroborated with adsorption to simple model supported lipid bilayers using a quartz crystal microbalance. We conclude that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material. Nanoparticle uptake is described as a two-step process, where the nanoparticles initially adhere to the cell membrane and subsequently are internalized by the cells via energy-dependent pathways. The lowered adhesion in the presence of proteins thereby causes a concomitant decrease in nanoparticle uptake efficiency. The presence of a biomolecular corona may confer specific interactions between the nanoparticle-corona complex and the cell surface including triggering of regulated cell uptake. An important effect of the corona is, however, a reduction in the purely unspecific interactions between the bare material and the cell membrane, which in itself disregarding specific interactions, causes a decrease in cellular uptake. We suggest that future nanoparticle-cell studies include, together with characterization of size, charge, and dispersion stability, an evaluation of the adhesion properties of the material to relevant membranes.
      2149Scopus© Citations 653
  • Publication
    Paracrine signalling of inflammatory cytokines from an in vitro blood brain barrier model upon exposure to polymeric nanoparticles
    Nanoparticle properties, such as small size relative to large highly modifiable surface area, offer great promise for neuro-therapeutics and nanodiagnostics. A fundamental understanding and control of how nanoparticles interact with the blood-brain barrier (BBB) could enable major developments in nanomedical treatment of previously intractable neurological disorders, and help ensure that nanoparticles not intended to reach the brain do not cause adverse effects. Nanosafety is of utmost importance to this field. However, a distinct lack of knowledge exists regarding nanoparticle accumulation within the BBB and the biological effects this may induce on neighbouring cells of the Central Nervous System (CNS), particularly in the long-term. This study focussed on the exposure of an in vitro BBB model to model carboxylated polystyrene nanoparticles (PS COOH NPs), as these nanoparticles are well characterised for in vitro experimentation and have been reported as non-toxic in many biological settings. TEM imaging showed accumulation but not degradation of 100 nm PS COOH NPs within the lysosomes of the in vitro BBB over time. Cytokine secretion analysis from the in vitro BBB post 24 h 100 nm PS COOH NP exposure showed a low level of pro-inflammatory RANTES protein secretion compared to control. In contrast, 24 h exposure of the in vitro BBB endothelium to 100 nm PS COOH NPs in the presence of underlying astrocytes caused a significant increase in pro-survival signalling. In conclusion, the tantalising possibilities of nanomedicine must be balanced by cautious studies into the possible long-term toxicity caused by accumulation of known 'toxic' and 'non-toxic' nanoparticles, as general toxicity assays may be disguising significant signalling regulation during long-term accumulation.
      557Scopus© Citations 37
  • Publication
    Mapping protein binding sites on the biomolecular corona of nanoparticles
    Nanoparticles in a biological milieu are known to form a sufficiently long-lived and well-organized 'corona' of biomolecules to confer a biological identity to the particle. Because this nanoparticle-biomolecule complex interacts with cells and biological barriers, potentially engaging with different biological pathways, it is important to clarify the presentation of functional biomolecular motifs at its interface. Here, we demonstrate that by using antibody-labelled gold nanoparticles, differential centrifugal sedimentation and various imaging techniques it is possible to identify the spatial location of proteins, their functional motifs and their binding sites. We show that for transferrin-coated polystyrene nanoparticles only a minority of adsorbed proteins exhibit functional motifs and the spatial organization appears random, which is consistent, overall, with a stochastic and irreversible adsorption process. Our methods are applicable to a wide array of nanoparticles and can offer a microscopic molecular description of the biological identity of nanoparticles.
      553Scopus© Citations 299