Now showing 1 - 6 of 6
  • Publication
    Implementing an intuitive mutation operator for interactive evolutionary 3D design
    Locality - how well neighbouring genotypes correspond to neighbouring phenotypes - has been described as a key element in Evolutionary Computation. Grammatical Evolution (GE) is a generative system as it uses grammar rules to derive a program from an integer encoded genome. The genome, upon which the evolutionary process is carried out, goes through several transformations before it produces an output. The aim of this paper is to investigate the impact of locality during the generative process using both qualitative and quantitative techniques. To explore this, we examine the effects of standard GE mutation using distance metrics and conduct a survey of the output designs. There are two different kinds of event that occur during standard GE Mutation. We investigate how each event type affects the locality on different phenotypic stages when applied to the problem of interactive design generation.
      614Scopus© Citations 9
  • Publication
    Higher-order functions in aesthetic EC encodings
    The use of higher-order functions, as a method of abstraction and re-use in EC encodings, has been the subject of relatively little research. In this paper we introduce and give motivation for the ideas of higher-order functions, and describe their general advantages in EC encodings. We implement grammars using higher-order ideas for two problem domains, music and 3D architectural design, and use these grammars in the grammatical evolution paradigm. We demonstrate four advantages of higher-order functions (patterning of phenotypes, non-entropic mutations, compression of genotypes, and natural expression of artistic knowledge) which lead to beneficial results on our problems.
      839Scopus© Citations 13
  • Publication
    The effect of angles and distance on image-based, three-dimensional re-constructions
    This paper introduces a three-dimensional reconstruction experiment based on a physical laboratory-based experiment on a brick wall. Using controlled shooting distances and angles, different images sets were captured and processed with a structure from motion based technique, which can reconstruct 3D models based on multi-view, two-dimensional (2D) images. Those 2D geometries are shown to generate significant deformations within the resulting point cloud, especially where there were large angles (with respect the camera position and the wall's normal direction) and at close distances to the wall's surface. This paper demonstrates that by overlapping different flawed image sets, the deformation problem can be minimised. 
      350Scopus© Citations 8
  • Publication
    Combining structural analysis and multi-objective criteria for evolutionary architectural design
    This study evolves and categorises a population of conceptual designs by their ability to handle physical constraints. The design process involves a trade-off between form and function. The aesthetic considerations of the designer are constrained by physical considerations and material cost. In previous work, we developed a design grammar capable of evolving aesthetically pleasing designs through the use of an interactive evolutionary algorithm. This work implements a fitness function capable of applying engineering objectives to automatically evaluate designs and, in turn, reduce the search space that is presented to the user.
      1092Scopus© Citations 27
  • Publication
    Interactive operators for evolutionary architectural design
    (University College Dublin. School of Computer Science and Informatics, 2011-04-12) ; ;
    In this paper we explore different techniques that allow the user to direct interactive evolutionary search. Broadening interaction beyond simple evaluation increases the amount of feedback and bias a user can apply to the search. Increased feedback will have the effect of directing the algorithm to more fruitful areas of the search space. This paper examines whether additional feedback from the user can be a benefit to the problem of evolutionary design. We find that the interface between the user and the search space plays a vital role in this process.
  • Publication
    Evolutionary design using grammatical evolution and shape grammars : designing a shelter
    A new evolutionary design tool is presented, which uses shape grammars and a grammar-based form of evolutionary computation, grammatical evolution (GE). Shape grammars allow the user to specify possible forms, and GE allows forms to be iteratively selected, recombined and mutated: this is shown to be a powerful combination of techniques. The potential of GE and shape grammars for evolutionary design is examined by attempting to design a single-person shelter to be evaluated by collaborators from the University College Dublin School of Architecture, Landscape, and Engineering. The team was able to successfully generate conceptual shelter designs based on scrutiny from the collaborators. A number of avenues for future work are highlighted arising from the case study.