Now showing 1 - 7 of 7
  • Publication
    Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS G13D
    Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.
  • Publication
    An Integrative Computational Approach for a Prioritization of Key Transcription Regulators Associated With Nanomaterial-Induced Toxicity
    A rapid increase of new nanomaterial products poses new challenges for their risk assessment. Current traditional methods for estimating potential adverse health effect of nanomaterials (NMs) are complex, time consuming and expensive. In order to develop new prediction tests for nanotoxicity evaluation, a systems biology approach and data from high-throughput omics experiments can be used. We present a computational approach that combines reverse engineering techniques, network analysis and pathway enrichment analysis for inferring the transcriptional regulation landscape and its functional interpretation. To illustrate this approach, we used published transcriptomic data derived from mice lung tissue exposed to carbon nanotubes (NM-401 and NRCWE-26). Because fibrosis is the most common adverse effect of these NMs, we included in our analysis the data for bleomycin (BLM) treatment, which is a well-known fibrosis inducer. We inferred gene regulatory networks for each NM and BLM to capture functional hierarchical regulatory structures between genes and their regulators. Despite the different nature of the lung injury caused by nanoparticles and BLM, we identified several conserved core regulators for all agents. We reason that these regulators can be considered as early predictors of toxic responses after NMs exposure. This integrative approach, which refines traditional methods of transcriptomic analysis, can be useful for prioritization of potential core regulators and generation of new hypothesis about mechanisms of nanoparticles toxicity.
      397Scopus© Citations 6
  • Publication
    Wnt signalling is a bi-directional vulnerability of cancer cells
    Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
      250Scopus© Citations 25
  • Publication
    Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling
    Clinically used RAF inhibitors are ineffective in RAS-mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, post-translational modifications and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
      306Scopus© Citations 34
  • Publication
    Integrative omics reveals MYCN as a global suppressor of cellular signalling and enables network-based therapeutic target discovery in neuroblastoma
    Despite intensive study, many mysteries remain about the MYCN oncogene's functions. Here we focus on MYCN's role in neuroblastoma, the most common extracranial childhood cancer. MYCN gene amplification occurs in 20% of cases, but other recurrent somatic mutations are rare. This scarcity of tractable targets has hampered efforts to develop new therapeutic options. We employed a multi-level omics approach to examine MYCN functioning and identify novel therapeutic targets for this largely un-druggable oncogene. We used systems medicine based computational network reconstruction and analysis to integrate a range of omic techniques: sequencing-based transcriptomics, genome-wide chromatin immunoprecipitation, siRNA screening and interaction proteomics, revealing that MYCN controls highly connected networks, with MYCN primarily supressing the activity of network components. MYCN's oncogenic functions are likely independent of its classical heterodimerisation partner, MAX. In particular, MYCN controls its own protein interaction network by transcriptionally regulating its binding partners.Our network-based approach identified vulnerable therapeutically targetable nodes that function as critical regulators or effectors of MYCN in neuroblastoma. These were validated by siRNA knockdown screens, functional studies and patient data. We identified β-estradiol and MAPK/ERK as having functional cross-talk with MYCN and being novel targetable vulnerabilities of MYCN-amplified neuroblastoma. These results reveal surprising differences between the functioning of endogenous, overexpressed and amplified MYCN, and rationalise how different MYCN dosages can orchestrate cell fate decisions and cancerous outcomes. Importantly, this work describes a systems-level approach to systematically uncovering network based vulnerabilities and therapeutic targets for multifactorial diseases by integrating disparate omic data types.
      288Scopus© Citations 28
  • Publication
    GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms including p53 and Wnt signalling
    Neuroblastoma is an embryonal tumor accounting for approximately 15% of childhood cancer deaths. There exists a clinical need to identify novel therapeutic targets, particularly for treatment-resistant forms of neuroblastoma. Therefore, we investigated the role of the neuronal master regulator GSK3 in controlling neuroblastoma cell fate. We identified novel GSK3-mediated regulation of MYC (c-MYC and MYCN) mRNA levels, which may have implications for numerous MYC-driven cancers. In addition, we showed that certain GSK3 inhibitors induced large-scale cell death in neuroblastoma cells, primarily through activating apoptosis. mRNA-seq of GSK3 inhibitor–treated cells was performed and subsequent pathway analysis revealed that multiple signaling pathways contributed to the loss of neuroblastoma cell viability. The contribution of two of the signaling pathways highlighted by the mRNA-seq analysis was functionally validated. Inhibition of the p53 tumor suppressor partly rescued the cell death phenotype, whereas activation of canonical Wnt signaling contributed to the loss of viability, in a p53-independent manner. Two GSK3 inhibitors (BIO-acetoxime and LiCl) and one small-molecule Wnt agonist (Wnt Agonist 1) demonstrated therapeutic potential for neuroblastoma treatment. These inhibitors reduced the viability of numerous neuroblastoma cell lines, even those derived from high-risk MYCN-amplified metastatic tumors, for which effective therapeutics are currently lacking. Furthermore, although LiCl was lethal to neuroblastoma cells, it did not reduce the viability of differentiated neurons. Taken together our data suggest that these small molecules may hold potential as effective therapeutic agents for the treatment of neuroblastoma and other MYC-driven cancers.
      1696Scopus© Citations 64