Now showing 1 - 2 of 2
  • Publication
    Multiband Dual-Mode Doherty Power Amplifier Employing Phase Periodic Matching Network and Reciprocal Gate Bias for 5G Applications
    This article presents a novel method to design the multiband Doherty power amplifier (DPA). It is illustrated that phase periodic matching networks (PPMNs) can be used as multiband impedance inverters, off-set elements, and phase compensators to realize multiband DPAs. Moreover, the number of Doherty operation bands can be further increased by employing the reciprocal gate biases. A six-band dual-mode DPA with 1.8-2.2-/3.9-4.3-GHz operation bands in Mode I and 1.52-1.72-/2.38-2.53-/3.67-3.82-/4.53-4.68-GHz operation bands in Mode II using commercial GaN transistors is designed and implemented to validate the proposed method. The fabricated DPA achieves 8.7-13.5-dB gain and 39.6-41.5-dBm peak output power at all the designed bands. Drain efficiency of 49.2%-54.5% and 42.2%-56.7% is measured at a 6-dB output back-off in Mode I and Mode II, respectively. When stimulated by a five-carrier 100-MHz OFDM signal with a 7.7-dB peak-to-average power ratio (PAPR), adjacent channel power ratio (ACPR) of better than -48.9 dBc can be obtained by the proposed DPA after digital predistortion with 35.5%-50.1% average drain efficiency at 1.65/1.95/2.45/3.75/4.1/4.6 GHz, respectively.
    Scopus© Citations 28  517
  • Publication
    Analysis and Design of Highly Efficient Wideband RF-Input Sequential Load Modulated Balanced Power Amplifier
    The analysis and design of an RF-input sequential load modulated balanced power amplifier (SLMBA) are presented in this article. Unlike the existing LMBAs, in this new configuration, an over-driven class-B amplifier is used as the carrier amplifier while the balanced PA pair is biased in class-C mode to serve as the peaking amplifier. It is illustrated that the sequential operation greatly extends the high-efficiency power range and enables the proposed SLMBA to achieve high back-off efficiency across a wide bandwidth. An RF-input SLMBA at 3.05-3.55-GHz band using commercial GaN transistors is designed and implemented to validate the proposed architecture. The fabricated SLMBA attains a measured 9.5-10.3-dB gain and 42.3-43.7-dBm saturated power. Drain efficiency of 50.9-64.9/ 46.8-60.7/43.2-51.4% is achieved at 6-/8-/10-dB output power back-off within the designed bandwidth. By changing the bias condition of the carrier device, higher than 49.1% drain efficiency can be obtained within the 12.8-dB output power range at 3.3 GHz. When driven by a 40-MHz orthogonal frequency-division multiplexing (OFDM) signal with 8-dB peak-to-average power ratio (PAPR), the proposed SLMBA achieves adjacent channel leakage ratio (ACLR) better than -25 dBc with an average efficiency of 63.2% without digital predistortion (DPD). When excited by a ten-carrier 200-MHz OFDM signal with 10-dB PAPR, the average efficiency can reach 48.2% and -43.9-dBc ACLR can be obtained after DPD.
      875Scopus© Citations 58