Options
Safari, Ashkan
Preferred name
Safari, Ashkan
Official Name
Safari, Ashkan
Research Output
Now showing 1 - 9 of 9
- PublicationMechanical properties of a mature biofilm from a wastewater system: from microscale to macroscale level(Taylor and Francis, 2015-09-15)
; ; ; ; A fundamental understanding of biofilm mechanical stability is critical in order to describe detachment and develop biofouling control strategies. It is thus important to characterise the elastic deformation and flow behaviour of the biofilm under different modes of applied force. In this study, the mechanical properties of a mature wastewater biofilm were investigated with methods including macroscale compression and microscale indentation using atomic force microscopy (AFM). The mature biofilm was found to be mechanically isotropic at the macroscale level as its mechanical properties did not depend on the scales and modes of loading. However, the biofilm showed a tendency for mechanical inhomogeneity at the microscale level as indentation progressed deeper into the matrix. Moreover, it was observed that the adhesion force had a significant influence on the elastic properties of the biofilm at the surface, subjected to microscale tensile loading. These results are expected to inform a damage-based model for biofilm detachment.57Scopus© Citations 22 - PublicationA physical impact of organic fouling layers on bacterial adhesion during nanofiltration(Elsevier, 2014-12-15)
; ; ; ; ; Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning film thickens to form a thin fouling layer. This study hence sought to determine if a thin fouling layer deposited on a nanofiltration membrane under permeate flux conditions governed bacterial adhesion in the same manner as a conditioning film on a surface. Thin fouling layers (less than 50 μm thick) of humic acid or alginic acid were formed on Dow Filmtec NF90 membranes and analysed using Atomic Force Microscopy (AFM), confocal microscopy and surface energy techniques. Fluorescent microscopy was then used to quantify adhesion of Pseudomonas fluorescens bacterial cells onto virgin or fouled membranes under filtration conditions.It was found that instead of adhering on or into the organic fouling layer, the bacterial cells penetrated the thin fouling layer and adhered directly to the membrane surface underneath. Contrary to what surface energy measurements of the fouling layer would indicate, bacteria adhered to a greater extent onto clean membranes (24 ± 3% surface coverage) than onto those fouled with humic acid (9.8 ± 4%) or alginic acid (7.5 ± 4%). These results were confirmed by AFM measurements which indicated that a considerable amount of energy (10−7 J/μm) was dissipated when attempting to penetrate the fouling layers compared to adhering onto clean NF90 membranes (10−15 J/μm). The added resistance of this fouling layer was thusly seen to reduce the number of bacterial cells which could reach the membrane surface under permeate conditions. This research has highlighted an important difference between fouling layers for the particular case of nanofiltration membranes under permeate flux conditions and surface conditioning films which should be considered when conducting adhesion experiments under filtration conditions. It has also shown AFM to be an integral tool for such experiments.485Scopus© Citations 23 - PublicationThe significance of calcium ions on Pseudomonas fluorescens biofilms – a structural and mechanical studyThe purpose of this study was to investigate the effects of calcium ions on the structural and mechanical properties of Pseudomonas fluorescens biofilms grown for 48 h. Advanced investigative techniques such as confocal laser scanning microscopy and atomic force spectroscopy were employed to characterize biofilm structure as well as biofilm mechanical properties following growth at different calcium concentrations. The presence of calcium during biofilm development led to higher surface coverage with distinct structural phenotypes in the form of a granular and heterogeneous surface, compared with the smoother and homogeneous biofilm surface in the absence of calcium. The presence of calcium also increased the adhesive nature of the biofilm, while reducing its elastic properties. These results suggest that calcium ions could have a functional role in biofilm development and have practical implications, for example, in analysis of biofouling in membrane-based water-treatment processes such as nanofiltration or reverse osmosis where elevated calcium concentrations may occur at the solid–liquid interface.
572Scopus© Citations 36 - PublicationThe importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes(Elsevier, 2013-05-15)
; ; ; ; ; Biofouling of nanofiltration (NF) and reverse osmosis (RO) membranes for water treatment has been the subject of increased research effort in recent years. A prerequisite for undertaking fundamental experimental investigation on NF and RO processes is a procedure called compaction. This involves an initial phase of clean water permeation at high pressures until a stable permeate flux is reached. However water quality used during the compaction process may vary from one laboratory to another. The aim of this study was to investigate the impact of laboratory water quality during compaction of NF membranes. A second objective was to investigate if the water quality used during compaction influences initial bacterial adhesion. Experiments were undertaken with NF270 membranes at 15 bar for permeate volumes of 0.5L, 2L, and 5L using MilliQ, deionized or tap water. Membrane autopsies were performed at each permeation point for membrane surface characterisation by contact angle measurements, profilometry, and scanning electron microscopy. The biological content of compacted membranes was assessed by direct epi-fluorescence observation following nucleic acid staining. The compacted membranes were also employed as substrata for monitoring the initial adhesion of Ps. fluorescens under dynamic flow conditions for 30 minutes at 5 minutes intervals. Compared to MilliQ water, membrane compaction using deionized and tap water led to decreases in permeate flux, increase in surface hydrophobicity and led to significant buildup of a homogenous fouling layer composed of both living and dead organisms (>10⁶cells.cm−2). Subsequent measurements of bacterial adhesion resulted in cell loadings of 0.2×10⁵, 1.0×10⁵cells×cm−2 and 2.6×10⁵ cells.cm−2 for deionized, tap water and MilliQ water, respectively. These differences in initial cell adhesion rates demonstrate that choice of laboratory water can significantly impact the results of bacterial adhesion on NF membranes. Standardized protocols are therefore needed for the fundamental studies of bacterial adhesion and biofouling formation on NF and RO membrane. This can be implemented by first employing pure water during all membrane compaction proceduresand for the modelled feed solutions used in the experiment.1079Scopus© Citations 26 - PublicationDisinfection of a polyamide nanofiltration membrane using ethanol(Elsevier, 2013-12-15)
; ; ; ; ; ; It is imperative that nanofiltration membranes are disinfected before they are used for laboratory-scale bacterial adhesion or biofouling experiments, yet currently no suitable disinfection protocol exists. This study aimed to determine if an ethanol treatment at a minimum inhibitory concentration (MIC) could be used to effectively disinfect nanofiltration membranes without altering membrane properties which could affect research. Two strains of bacteria, Pseudomonas fluorescens and Staphylococcus sp., were exposed to a range of ethanol concentrations to determine the MIC required for a 4log10 reduction in bacteria. In parallel, ethanol's effects on the filtration, surface and mechanical properties of a Dow Filmtec NF90 membrane were analysed. A 1.5 hour treatment with 40% ethanol was shown to effectively disinfect the membrane without significantly affecting any of the membranes properties tested. This treatment protocol can now be safely used to disinfect the studied membrane prior to bacterial adhesion or biofouling experiments. This study also acts as a guideline for researchers using other membranes to determine a suitable disinfection protocol for their needs.1044Scopus© Citations 29 - PublicationRevealing region-specific biofilm viscoelastic properties by means of a microrheological approach(Nature Publishing Group, 2016-12-05)
; ; ; ; ; Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis. This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24hr and 48hr) and alternate ionic conditions (with and without calcium chloride supplementation). The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character.343Scopus© Citations 26 - PublicationA fluid-structure interaction study of biofilm detachment(Computational & Mathematical Biomedical Engineering (CMBE), 2009-07-01)
; ; ; During the biofilm development process, bacterial cells may detach from the biofilm into the surrounding fluid. The key question in relation to detachment from bacterial biofilm is the mechanical response to hydrodynamic forces. In this study, a Finite Volume Method (FVM) based Fluid-Structure Interaction (FSI) solver in OpenFOAM package has been developed to model the biofilm response to flow [1]. Dynamic interaction was simulated between an incompressible Newtonian fluid and a bacterial biofilm described as a linear viscoelastic solid. Viscoelastic response of the biofilm was represented by the hereditary integral form of constitutive relation [2] while tensile relaxation modulus was expressed by the Generalised Maxwell Model (GMM) in the form of Prony series (a discrete retardation spectrum). GMM was obtained from the rheometry creep experimental data using a three-step method proposed by Dooling et al. [3]. The creep curves were all viscoelastic in nature and approximated by a linear viscoelastic model represented by Generalised Voigt Model (GVM). Elastic shear modulus (G), obtained from the three-step method, ranged from 583Pa to 1368Pa which were similar to the previous rheometry studies. In this two-dimensional model, biofilm was considered as semi-semispherical shape (thickness of 100μm and width of 346μm) attached to the center of the bottom boundary of the square cross-section flow cell. Fluid flow through the flow cell was in laminar regime. Simulation results predicted the potential site for biofilm detachment subjected to increasing fluid flow rate through the flow cell.1766 - PublicationNanofiltration and reverse osmosis surface topographical heterogeneities: do they matter for initial bacterial adhesion?(Elsevier, 2015-07-15)
; ; ; ; ; The role of the physicochemical and surface properties of NF/RO membranes influencing bacterial adhesion has been widely studied. However, there exists a poor understanding of the potential role membrane topographical heterogeneities can have on bacterial adhesion. Heterogeneities on material surfaces have been shown to influence bacterial adhesion and biofilm development. The purpose of this study was therefore to investigate whether the presence of membrane topographical heterogeneities had a significant role during bacterial adhesion as this could significantly impact on how biofouling develops on membranes during NF/RO operation. An extensive study was devised in which surface topographical heterogeneities from two commercial membranes, NF270 and BW30, were assessed for their role in the adhesion of two model organisms of different geometrical shapes, Pseudomonas fluorescens and Staphylococcus epidermidis. The influence of cross-flow velocity and permeate flux was also tested, as well as the angle to which bacteria adhered compared to the flow direction. Bacterial adhesion onto the membranes and in their surface topographical heterogeneities was assessed using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), fluorescence microscopy and image analysis. Results showed that up to 30% of total adhered cells were found in membrane defect areas when defect areas only covered up to 13% of the membrane surface area. This suggests that topographical heterogeneities may play a significant role in establishing environmental niches during the early stages of biofilm development. Furthermore, no noticeable difference between the angle of cell attachment in defect areas compared to the rest of the membrane surface was found.509Scopus© Citations 17 - PublicationDetachment characteristics of a mixed culture biofilm using particle size analysisDetachment is a critically important aspect of biofilm processes; it impacts not only on the characteristics of the biofilm itself but also has general implications for the dissemination of pathogenic bacteria and the operation of biofilm reactors. The mechanisms of biofilm detachment are of fundamental importance in the analysis of biofilm processes. However the complexity of biofilm detachment creates difficulties in performing and analyzing experiments. It is necessary to identify if, under steady conditions, biofilms experiments are reproducible with respect to detachment. In this study mixed culture biofilms were cultivated under low shear conditions over four days in glass flow cells in triplicate under non-recirculation conditions. Detached particles were regularly sampled, were stained, filtered and analyzed using a fluorescence microscope to establish size distributions of detached cells and cell clumps. This study has shown that, despite the existence of a complex particle size distribution, reproducibility is possible in four day old mixed culture biofilms. This has important implications for the study of active or passive detachment in biofilm systems. This study also distinguished between erosion and sloughing following step increases in shear stress.
980Scopus© Citations 23