Now showing 1 - 2 of 2
  • Publication
    Treatment of fluoroacetate by a Pseudomonas fluorescens biofilm grown in membrane aerated biofilm reactor
    Fluorinated organic compounds have widespread applications, and their accumulation in the environment is a concern. Biofilm reactors are an effective technology for the treatment of contaminated wastewater, yet almost no research has been conducted on the effectiveness of biofilms for the biodegradation of fluorinated aliphatic compounds. In this paper we describe experiments undertaken to investigate the degradation of fluoroacetate using a membrane aerated biofilm reactor (MABR) by Pseudomonas fluorescens DSM8341. The concentration of fluoroacetate in the medium influenced biofilm structure, with less dense biofilm observed at lower fluoroacetate loading rates. As biofilm thickness increased, oxygen utilization decreased, probably as a consequence of increased resistance to oxygen transfer. Furthermore, most of the biofilm was anaerobic, since oxygen penetration depth was less than 1000 μm. Biofilm performance, in terms of fluoroacetate removal efficiency, was improved by decreasing the fluoroacetate loading rate, however increasing the intramembrane oxygen pressure had little effect on biofilm performance. A mathematical model showed that while fluoroacetate does not penetrate the entire biofilm, the defluorination intermediate metabolite glycolate does, and consequently the biofilm was not carbon limited at the biofilm−membrane interface where oxygen concentrations were highest. The model also showed the accumulation of the free fluoride ion within the biofilm. Overflow metabolism of glycolate was identified to be most likely a result of a combination of oxygen limitation and free fluoride ion inhibition. The study demonstrated the potential of MABR for treating wastewater streams contaminated with organofluorine compounds.
      906Scopus© Citations 24
  • Publication
    Comparison of planktonic and biofilm cultures of Pseudomonas fluorescens DSM 8341 cells grown on fluoroacetate
    (American Society for Microbiology, 2009-05) ; ;
    Comparisons between the physiological properties of Pseudomonas fluorescens biofilm cells grown in a tubular biofilm reactor and planktonic cells grown in a chemostat were performed. Fluoroacetate was the sole carbon source for all experiments. The performance of cells was assessed using cell cycle kinetics and by determining specific fluoroacetate utilization rates. Cell cycle kinetics were studied by flow cytometry in conjunction with the fluorescent stain propidium iodide. Determination of the DNA content of planktonic and biofilm cultures showed little difference between the two modes of growth. Cultures with comparable specific glycolate utilization rates had similar percentages of cells in the B phase of the cell cycle, indicating similar growth rates. Specific fluoroacetate utilization rates showed the performance of planktonic cells to be superior to that of biofilm cells, with more fluoroacetate utilized per cell at similar specific fluoroacetate loading rates. A consequence of this decreased biofilm performance was the accumulation of glycolate in the effluent of biofilm cultures. This accumulation of glycolate was not observed in the effluent of planktonic cultures. Spatial stratification of oxygen within the biofilm was identified as a possible explanation for the overflow metabolism of glycolate and the decreased performance of the biofilm cells.
    Scopus© Citations 33  545