Now showing 1 - 10 of 41
  • Publication
    Common and Distinctive Functions of the Hippo Effectors Taz and Yap in Skeletal Muscle Stem Cell Function
    Hippo pathway downstream effectors Yap and Taz play key roles in cell proliferation and regeneration, regulating gene expression especially via Tead transcription factors. To investigate their role in skeletal muscle stem cells, we analyzed Taz in vivo and ex vivo in comparison with Yap. Small interfering RNA knockdown or retroviral-mediated expression of wild-type human or constitutively active TAZ mutants in satellite cells showed that TAZ promoted proliferation, a function shared with YAP. However, at later stages of myogenesis, TAZ also enhanced myogenic differentiation of myoblasts, whereas YAP inhibits such differentiation. Functionally, while muscle growth was mildly affected in Taz (gene Wwtr1–/–) knockout mice, there were no overt effects on regeneration. Conversely, conditional knockout of Yap in satellite cells of Pax7Cre-ERT2/+: Yapfl°x/fl°x:Rosa26Lacz mice produced a regeneration deficit. To identify potential mechanisms, microarray analysis showed many common TAZ/YAP target genes, but TAZ also regulates some genes independently of YAP, including myogenic genes such as Pax7, Myf5, and Myod1 (ArrayExpress–E-MTAB-5395). Proteomic analysis revealed many novel binding partners of TAZ/YAP in myogenic cells, but TAZ also interacts with proteins distinct from YAP that are often involved in myogenesis and aspects of cytoskeleton organization (ProteomeXchange–PXD005751). Neither TAZ nor YAP bind members of the Wnt destruction complex but both regulated expression of Wnt and Wnt-cross talking genes with known roles in myogenesis. Finally, TAZ operates through Tead4 to enhance myogenic differentiation. In summary, Taz and Yap have overlapping functions in promoting myoblast proliferation but Taz then switches to enhance myogenic differentiation. Stem Cells 2017;35:1958–1972.
    Scopus© Citations 79  199
  • Publication
    Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.
      14
  • Publication
    An Integrative Computational Approach for a Prioritization of Key Transcription Regulators Associated With Nanomaterial-Induced Toxicity
    A rapid increase of new nanomaterial products poses new challenges for their risk assessment. Current traditional methods for estimating potential adverse health effect of nanomaterials (NMs) are complex, time consuming and expensive. In order to develop new prediction tests for nanotoxicity evaluation, a systems biology approach and data from high-throughput omics experiments can be used. We present a computational approach that combines reverse engineering techniques, network analysis and pathway enrichment analysis for inferring the transcriptional regulation landscape and its functional interpretation. To illustrate this approach, we used published transcriptomic data derived from mice lung tissue exposed to carbon nanotubes (NM-401 and NRCWE-26). Because fibrosis is the most common adverse effect of these NMs, we included in our analysis the data for bleomycin (BLM) treatment, which is a well-known fibrosis inducer. We inferred gene regulatory networks for each NM and BLM to capture functional hierarchical regulatory structures between genes and their regulators. Despite the different nature of the lung injury caused by nanoparticles and BLM, we identified several conserved core regulators for all agents. We reason that these regulators can be considered as early predictors of toxic responses after NMs exposure. This integrative approach, which refines traditional methods of transcriptomic analysis, can be useful for prioritization of potential core regulators and generation of new hypothesis about mechanisms of nanoparticles toxicity.
    Scopus© Citations 7  544
  • Publication
    RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73
    Transition from pluripotency to differentiation is a pivotal yet poorly understood developmental step. Here, we show that the tumour suppressor RASSF1A is a key player driving the early specification of cell fate. RASSF1A acts as a natural barrier to stem cell self-renewal and iPS cell generation, by switching YAP from an integral component in the β-catenin-TCF pluripotency network to a key factor that promotes differentiation. We demonstrate that epigenetic regulation of the Rassf1A promoter maintains stemness by allowing a quaternary association of YAP-TEAD and β-catenin-TCF3 complexes on the Oct4 distal enhancer. However, during differentiation, promoter demethylation allows GATA1-mediated RASSF1A expression which prevents YAP from contributing to the TEAD/β-catenin-TCF3 complex. Simultaneously, we find that RASSF1A promotes a YAP-p73 transcriptional programme that enables differentiation. Together, our findings demonstrate that RASSF1A mediates transcription factor selection of YAP in stem cells, thereby acting as a functional "switch" between pluripotency and initiation of differentiation.
    Scopus© Citations 65  178
  • Publication
    Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharmacological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration.
    Scopus© Citations 12  17
  • Publication
    Quantifying the Kinase Activities of MST1/2
    The functions of the kinases MST1 and MST2 rely heavily on their ability to phosphorylate and become phosphorylated themselves. Hence, it is important to precisely measure the kinase activities of both isoforms in a reproducible manner. Here, we describe in detail the protocol for an in-gel kinase assay for the quantification of the kinase activity of MST1/2, which involves immunoprecipitation of MST1/2 and the incorporation of radiolabeled phosphate from [γ-32P]-ATP into a substrate immobilized in a polyacrylamide gel. We also include a protocol for indirect measurement of MST1/2 activation status using immunoblotting.
      277
  • Publication
    Characterisation of HRas local signal transduction networks using engineered site-specific exchange factors
    Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools. Here, we describe a new set of site-specific tethered exchange factors, engineered by fusing the RasGRF1 CDC25 domain to sub-localisation-defining cues, whereby Ras pools at specific locations can be precisely activated. We show that the CDC25 domain has a high specificity for activating HRas but not NRas and KRas. This unexpected finding means that our constructs mainly activate endogenous HRas. Hence, their use enabled us to identify distinct pathways regulated by HRas in endomembranes and plasma membrane microdomains. Importantly, these new constructs unveil different patterns of HRas activity specified by their subcellular localisation. Overall, the targeted GEFs described herein constitute ideal tools for dissecting spatially-defined HRas biochemical and biological functions.
    Scopus© Citations 8  407
  • Publication
    Interaction of LATS1 with SMAC links the MST2/Hippo pathway with apoptosis in an IAP-dependent manner
    Metastatic malignant melanoma is the deadliest skin cancer, and it is characterised by its high resistance to apoptosis. The main melanoma driving mutations are part of ERK pathway, with BRAF mutations being the most frequent ones, followed by NRAS, NF1 and MEK mutations. Increasing evidence shows that the MST2/Hippo pathway is also deregulated in melanoma. While mutations are rare, MST2/Hippo pathway core proteins expression levels are often dysregulated in melanoma. The expression of the tumour suppressor RASSF1A, a bona fide activator of the MST2 pathway, is silenced by promoter methylation in over half of melanomas and correlates with poor prognosis. Here, using mass spectrometry-based interaction proteomics we identified the Second Mitochondria-derived Activator of Caspases (SMAC) as a novel LATS1 interactor. We show that RASSF1A-dependent activation of the MST2 pathway promotes LATS1-SMAC interaction and negatively regulates the antiapoptotic signal mediated by the members of the IAP family. Moreover, proteomic experiments identified a common cluster of apoptotic regulators that bind to SMAC and LATS1. Mechanistic analysis shows that the LATS1-SMAC complex promotes XIAP ubiquitination and its subsequent degradation which ultimately results in apoptosis. Importantly, we show that the oncogenic BRAFV600E mutant prevents the proapoptotic signal mediated by the LATS1-SMAC complex while treatment of melanoma cell lines with BRAF inhibitors promotes the formation of this complex, indicating that inhibition of the LATS1-SMAC might be necessary for BRAFV600E-driven melanoma. Finally, we show that LATS1-SMAC interaction is regulated by the SMAC mimetic Birinapant, which requires C-IAP1 inhibition and the degradation of XIAP, suggesting that the MST2 pathway is part of the mechanism of action of Birinapant. Overall, the current work shows that SMAC-dependent apoptosis is regulated by the LATS1 tumour suppressor and supports the idea that LATS1 is a signalling hub that regulates the crosstalk between the MST2 pathway, the apoptotic network and the ERK pathway.
    Scopus© Citations 2  14
  • Publication
    Proteomic Mapping of the Interactome of KRAS Mutants Identifies New Features of RAS Signalling Networks and the Mechanism of Action of Sotorasib
    RAS proteins are key regulators of cell signalling and control different cell functions including cell proliferation, differentiation, and cell death. Point mutations in the genes of this family are common, particularly in KRAS. These mutations were thought to cause the constitutive activation of KRAS, but recent findings showed that some mutants can cycle between active and inactive states. This observation, together with the development of covalent KRASG12C inhibitors, has led to the arrival of KRAS inhibitors in the clinic. However, most patients develop resistance to these targeted therapies, and we lack effective treatments for other KRAS mutants. To accelerate the development of RAS targeting therapies, we need to fully characterise the molecular mechanisms governing KRAS signalling networks and determine what differentiates the signalling downstream of the KRAS mutants. Here we have used affinity purification mass-spectrometry proteomics to characterise the interactome of KRAS wild-type and three KRAS mutants. Bioinformatic analysis associated with experimental validation allows us to map the signalling network mediated by the different KRAS proteins. Using this approach, we characterised how the interactome of KRAS wild-type and mutants is regulated by the clinically approved KRASG12C inhibitor Sotorasib. In addition, we identified novel crosstalks between KRAS and its effector pathways including the AKT and JAK-STAT signalling modules.
      20Scopus© Citations 1
  • Publication
    Genetic Deletion of Zebrafish Rab28 Causes Defective Outer Segment Shedding, but Not Retinal Degeneration
    The photoreceptor outer segment is the canonical example of a modified and highly specialized cilium, with an expanded membrane surface area in the form of disks or lamellae for efficient light detection. Many ciliary proteins are essential for normal photoreceptor function and cilium dysfunction often results in retinal degeneration leading to impaired vision. Herein, we investigate the function and localization of the ciliary G-protein RAB28 in zebrafish cone photoreceptors. CRISPR-Cas9 generated rab28 mutant zebrafish display significantly reduced shed outer segment material/phagosomes in the RPE at 1 month post fertilization (mpf), but otherwise normal visual function up to 21 dpf and retinal structure up to 12 mpf. Cone photoreceptor-specific transgenic reporter lines show Rab28 localizes almost exclusively to outer segments, independently of GTP/GDP nucleotide binding. Co-immunoprecipitation analysis demonstrates tagged Rab28 interacts with components of the phototransduction cascade, including opsins, phosphodiesterase 6C and guanylate cyclase 2D. Our data shed light on RAB28 function in cones and provide a model for RAB28-associated cone-rod dystrophy.
    Scopus© Citations 8  227