Options
Haughton, Peter D. W.
Preferred name
Haughton, Peter D. W.
Official Name
Haughton, Peter D. W.
Research Output
Now showing 1 - 10 of 16
- PublicationThe Clare Shale - Basal Ross Formation Contact, Western Ireland - New Insight from Behind-Outcrop Cores(2015-02-21)
; ; ; ; A recent behind - outcrop drilling program targeting the Ross Formation has focussed on the Loop Head peninsula in west Clare. This has provided a fully-cored composite Ross section (490 m thick) that underpins a new understanding of bed-scale variability and the vertical evolution of the system . The work programme h as now been broadened to include the key Ballybunion section on the south side of the Shannon which sits obliquely down-dip (to the east) of Loop Head (c. 18 km away).175 - PublicationSedimentology, sandstone provenance and palaeodrainage on the eastern Rockall Basin margin : evidence from the Pb isotopic composition of detrital K-feldspar(The Geological Society of London, 2010)
; ; ; ; The Rockall Basin, west of Ireland, is a frontier area for hydrocarbon exploration but currently the age and location of sand fairways through the basin are poorly known. A recently developed provenance approach based on in-situ Pb isotopic analysis of single K-feldspar grains by laser ablation multi-collector inductively-coupled mass spectrometry (LA-MC-ICPMS) offers advantages over other provenance techniques, particularly when applied to regional palaeodrainage issues. K-feldspar is a relatively common, usually first-cycle framework mineral in sandstones and its origin is typically linked to that of the quartz grains in arkosic and sub-arkosic rocks. Consequently, in contrast to other techniques, the Pb-in-K-feldspar tool characterises a significant proportion of the framework grains. New Pb isotopic data from K-feldspars in putative Permo-Triassic and Middle Jurassic sandstones in Well 12/2-1z (the Dooish gas condensate discovery) on the eastern margin of the Irish Rockall Basin are reported. These data suggest that three isotopically distinct basement sources supplied the bulk of the K-feldspar in the reservoir sandstones and that the relative contribution of these sources varied through time. Archaean and early Proterozoic rocks (including elements of the Lewisian Complex and its offshore equivalents), to the immediate east, north-east and north of the eastern Rockall Margin, are the likely sources. More distal sourcelands to the north-west cannot be ruled out but there was no significant input from southern sources, such as the Irish Massif. These data, together with previously published regional Pb isotopic data, highlight the important role played by old, near and far-field Archaean – Proterozoic basement highs in contributing sediment to NE Atlantic margin basins. The Irish Massif appears to have acted as a significant, but inert, drainage divide from the Permo-Triassic to the Late Jurassic and hence younger, Avalonian and Variscan, sand sources appear to have been less important on the Irish Atlantic Margin.2440Scopus© Citations 27 - PublicationLarge-scale, linked drainage systems in the NW European Triassic: insights from the Pb isotopic composition of detrital K-feldspar(The Geological Society, 2012-05)
; ; ; ; Pb isotopic data from K-feldspars in Middle Triassic (Anisian) sandstones in the Wessex Basin, onshore southwest UK, and the East Irish Sea Basin, some to the north, show that the same grain populations are present. This indicates that the drainage system (the “Budleighensis” River) feeding these basins originated from the same source/s, most probably the remnant Variscan Uplands to the south. Fluvial and aeolian sandstones have the same provenance, suggesting that if water- and wind-driven sands were originally derived from different sources, this has been obscured through reworking prior to final deposition. Significant recycling of feldspar from arkosic sandstones in earlier sedimentary basins can be ruled out. The provenance data agree with previous depositional models, indicating transport distances in excess of , with a drainage pattern that linked separate basins. This supports the idea that the regional fluvial system was driven by topography and episodic flooding events of sufficient magnitude to overcome evaporation and infiltration over hundred’s of kilometres. Importantly, this drainage system appears to have been isolated and independent from those operating contemporaneously to the northwest of the Irish and Scottish massifs, where the remnant Variscan Uplands apparently exerted no influence on drainage or sand supply.1220Scopus© Citations 30 - PublicationHybrid Event Bed Character Across the Clare Shale - Basal Ross Formation Contact, Western Ireland - New Insight from Behind-Outcrop Cores(2014-12-22)
; ; ; ; A recent behind - outcrop drilling program targeting the Ross Formation has focussed on the Loop Head peninsula in west Clare. This has provided a fully-cored composite Ross section (490 m thick) that underpins a new understanding of bed-scale variability and the vertical evolution of the system . The work programme h as now been broadened to include the key Ballybunion section on the south side of the Shannon which sits obliquely down-dip (to the east) of Loop Head (c. 18 km away).133 - PublicationFacies Trends and Large-Scale Architecture of the Pennsylvanian Ross Formation, Western Ireland - New Insight from Cores South of the Shannon(2013-12)
; ; ; ; The Ross Formation is well exposed in sea cliffs facing the Atlantic and Shannon estuary in western Ireland. It forms the sandy deep-water part of a major shallowing-upward Pennsylvanian succession. Over the last four years, a major behind-outcrop drilling program targeting the Ross Formation has focussed primarily on the Loop Head peninsula in west Clare. This has provided a composite Ross cored section (490 m thick) that underpins a new understanding of bed-scale variability and the wider vertical evolution of the system. The focus has now shifted to the key Ballybunion section on the south side of the Shannon, which sits obliquely down-dip (to the east) of the Loop Head area (c. 18 km away). This area is important in that previous outcrop studies have suggested that (1) the character of the lower Ross with its abundant hybrid event beds may reflect a marginal fringe position; (2) an extra sandy section may be present in the uppermost Ross due to offset stacking of the youngest lobes and (3) some of the upper Ross mass transport units may extend across the estuary from Clare. Two new cores are now available ¿behind¿ the Ballybunion cliff section: a 200 m long PQ borehole straddling the lower Ross and the upper part of the underlying Clare Shale (12-KY-UCD-09), and a 151.5 m long slimhole core acquired by the Geological Survey of Ireland (GSI 09/05). In addition, a re-analysis of the biostratigraphy is underway. Together the matched pair of Kerry boreholes with the outcrop section provide a reference section (480 m thick) that can be compared with the Loop composite section. Both sections have a distinctive precursor cycle involving first stacked thin mudflows and then outsized and coarse grained hybrid event beds. The muddier make-up of the latter at Ballybunion is consistent with a down-dip position based on trends in other basins. The onset of the main Ross system that follows is sandier at Ballybunion than at Loop suggesting the former was more axial at this time. Thereafter hybrid event beds appear not to be as important at Ballybunion. Several of the mass transport units and condensed sections extend across the Shannon and tie the sections.152 - PublicationDrainage reorganization during breakup of Pangea revealed by in-situ Pb isotopic analysis of detrital K-feldspar(The Geological Society of America, 2007-11)
; ; The Pb isotopic composition of detrital K-feldspar grains can be rapidly measured using laser ablation MC-ICPMS. The feldspar Pb signal can survive weathering, transport and diagenesis, and careful targeting avoids problems with inclusions and alteration. As common Pb isotopic compositions show broad (100s km scale) variation across the continents, the method provides a powerful provenance tracer for feldspathic sandstones. Here we combine a new Pb domain map for the circum-North Atlantic with detrital feldspar Pb isotopic data for Triassic and Jurassic sandstones from basins on the Irish Atlantic margin. The Pb compositions reveal otherwise cryptic feldspar populations that constrain the evolving drainage pattern. Triassic sandstones were sourced from distant Archean and Paleoproterozoic rocks, probably in Greenland, Labrador and Rockall Bank to the NW, implying long (>500 km) transport across a nascent rift system. Later Jurassic sandstones had a composite Paleo- and Mesoproterozoic source in more proximal sources to the north (<150 km away). Little or no feldspar was recycled from Triassic into Jurassic sandstones, and the change in provenance is consistent with distributed, low relief Triassic extension in a wide rift, followed by narrower Jurassic rifting with more localised fault-controlled sediment sources and sinks.807 - PublicationDown-dip Termination of Sandy Fan Systems - New Insight from the Pennsylvanian Ross Sandstone Formation, Western Ireland(2016-06-22)
; ; ; ; The Pennsylvanian Ross Sandstone Fm. in western Ireland forms part of a thick (>2200m) progradational and shallowing-upward basin-fill succession. New and legacy borehole constraints and outcrop work on the eastward extension of the Ross help constrain the down-dip character at different levels in the fan stack.154 - PublicationHierarchical parameterization and compression-based object modelling of high net: gross but poorly amalgamated deep-water lobe deposits(Geological Society of London, 2020-01-27)
; ; ; Deepwater lobe deposits are arranged hierarchically and can be characterized by high net:gross ratios but poor sand connectivity due to thin but laterally extensive shale layers. This heterogeneity makes them difficult to represent in standard full-field object-based models, since the sands in an object-based model are not stacked compensationally and become connected at a low net:gross ratio. The compression algorithm allows generation of low connectivity object-based models at high net:gross ratios, by including the net: gross and amalgamation ratios as independent input parameters. Object-based modelling constrained by the compression algorithm has been included in a recursive workflow, permitting generation of realistic models of hierarchical lobe deposits. Representative dimensional and stacking parameters collected at four different hierarchical levels have been used to constrain a 250 m thick, 14 km2 model that includes hierarchical elements ranging from 20 cm thick sand beds to 30+ m thick lobe complexes. Sand beds and the fine-grained units are represented explicitly in the model, and the characteristic facies associations often used to parameterize lobe deposits are emergent from the modelling process. The model is subsequently resampled without loss of accuracy for flow simulation, and results show clearly the influence of the hierarchical heterogeneity on drainage and sweep efficiency during a water-flood simulation.547Scopus© Citations 9 - PublicationDown-dip Termination of Sandy Fan Systems - New Insight from the Pennsylvanian Ross Sandstone Formation, Western Ireland(2015-12-22)
; ; ; ; New and legacy borehole constraints and outcrop work on the eastward extension of the Ross Formation help constrain the down-dip character of the fan stack.110 - PublicationFacies and internal stratigraphic variability in the Ross Sandstone Formation (Pennsylvanian), western Ireland - new borehole data from south of the Shannon Estuary(International Association of Sedimentologists, 2013-09)
; ; ; The 500 m thick Ross Sandstone Formation is well exposed in sea cliffs facing the Atlantic and along the Shannon Estuary in western Ireland. It forms the sandy deep-water part of a major shallowing-upward Pennsylvanian succession. Over the last four years, a major behind-outcrop drilling program targeting the Ross Sandstone Formation has been undertaken, focussing primarily on the Loop Head peninsula in west Clare. This has provided a full composite Ross cored section that underpins a new understanding of bed-scale variability and the wider evolution of the system. The focus has recently shifted to the key Ballybunion section on the south side of the River Shannon, obliquely down-dip from the Loop Head area (c. 18 km from the tip of the Loop) and is important in that previous outcrop studies have inferred that (1) the distinctive character of the lower Ross here with its abundant hybrid event beds may reflect a marginal position; and (2) extra sandy section may be present in the uppermost Ross due to offset stacking of the youngest sandy lobes. Two new cores are now available ¿behind¿ the Ballybunion section - a 200 m PQ borehole straddling the lower Ross and the upper part of the underlying Clare Shale Formation (12-CE-UCD-09), and a 151.5 m long, cored slimhole with associated wireline log data acquired by the Geological Survey of Ireland (GSI 09/05). The latter is 1.1 km along strike from coastal exposures of the upper Ross and the study reported here focusses on the relationship of the section acquired in this borehole to the local cliffs and to upper Ross outcrops on the north side of the River Shannon at Kilcredaun, some 4.6 km away. Correlation is based on goniatite-rich ¿marine bands¿, legacy biostratigraphic data (new determinations are underway), and a number of laterally extensive slump bodies which form distinctive marker beds. The GSI 09/05 core contains three thin goniatite-rich levels, and a fourth candidate level, each interpreted as marine bands. These separate sand-prone packages, interpreted as stacked isolated to amalgamated lobe units, and at least two mass-transport units (MTDs), the lower and thickest of which is 25.5 m thick (true thickness). In the local cliffs to the west, all four marine bands can be identified, as well as the two MTDs. In addition, a third MTD is more obvious in the cliff. The lobe sandstones are dominated by deposits of high-density turbidity currents; amalgamated sandbodies become more abundant upwards. Hybrid event beds are rare (<10%) compared to lower in the formation. At least 50% of the sandbodies extend from the core to the adjacent outcrop without change; the remainder show a change from deposition from high- to low-concentration flows or vice versa. Overall, the Ballybunion Ross section is 480 m thick, broadly similar to the thickness established by drilling on the Loop. At longer length scales, all but the upper marine band are found at Kilcredaun. Correlatives of the two MTD units also occur in the core here, although the thickest slump has become thinner and muddier. Nonetheless this MTD unit can be traced widely across the Loop as a distinctive couplet. As correlated, the Ballybunion outcrop and core suggest there may not be an additional younger sandbody in this area, however the location appears axial and down-dip rather than marginal in character overall.200