Options
Taylor, Cormac T.
Preferred name
Taylor, Cormac T.
Official Name
Taylor, Cormac T.
Research Output
Now showing 1 - 10 of 18
- PublicationFIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1(Public Library of Science, 2016-01-11)
; ; ; ; ; ; ; ; ; The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.226Scopus© Citations 60 - PublicationREST is a hypoxia-responsive transcriptional repressor(Springer Nature, 2016-08-17)
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.290Scopus© Citations 46 - PublicationHypoxia-dependent regulation of inflammatory pathways in immune cells(American Society for Clinical Investigation, 2016-07-25)
; ; ; Uncontrolled inflammation underpins a diverse range of diseases where effective therapy remains an unmet clinical need. Hypoxia is a prominent feature of the inflammatory microenvironment that regulates key transcription factors including HIF and NF-κB in both innate and adaptive immune cells. In turn, altered activity of the pathways controlled by these factors can affect the course of inflammation through the regulation of immune cell development and function. In this review, we will discuss these pathways and the oxygen sensors that confer hypoxic sensitivity in immune cells. Furthermore, we will describe how hypoxia-dependent pathways contribute to immunity and discuss their potential as therapeutic targets in inflammatory and infectious disease.382Scopus© Citations 119 - PublicationIncreased Virulence of Bloodstream Over Peripheral Isolates of P. aeruginosa Identified Through Post-transcriptional Regulation of Virulence Factors(Frontiers Media, 2018-10-26)
; ; ; ; ; ; ; ; ; ; ; The factors influencing the virulence of P. aeruginosa in the development of invasive infection remain poorly understood. Here, we investigated the role of the host microenvironment in shaping pathogen virulence and investigated the mechanisms involved. Comparing seven paired genetically indistinguishable clinical bloodstream and peripheral isolates of P. aeruginosa, we demonstrate that isolates derived from bloodstream infections are more virulent than their peripheral counterparts (p = 0.025). Bloodstream and peripheral isolates elicited similar NF-kB responses in a THP-1 monocyte NF-kappaB reporter cell line implicating similar immunogenicity. Proteomic analysis by mass spectrometry identified multiple virulence and virulence-related factors including LecA and RpoN in significantly greater abundance in the bacterial supernatant from the bloodstream isolate in comparison to that from the corresponding peripheral isolate. Investigation by qPCR revealed that control of expression of these virulence factors was not due to altered levels of transcription. Based on these data, we hypothesize a post-transcriptional mechanism of virulence regulation in P. aeruginosa bloodstream infections influenced by surrounding microenvironmental conditions.104Scopus© Citations 10 - PublicationHypoxia: an alarm signal during intestinal inflammationIntestinal epithelial cells that line the mucosal surface of the gastrointestinal tract are positioned between an anaerobic lumen and a highly metabolic lamina propria. As a result of this unique anatomy, intestinal epithelial cells function within a steep physiologic oxygen gradient relative to other cell types. Furthermore, during active inflammatory disease such as IBD, metabolic shifts towards hypoxia are severe. Studies in vitro and in vivo have shown that the activation of hypoxia-inducible factor (HIF) serves as an alarm signal to promote the resolution of inflammation in various mouse models of disease. Amelioration of disease occurs, at least in part, through transcriptional upregulation of nonclassic epithelial barrier genes. There is much interest in harnessing hypoxia-inducible pathways, including stabilizing HIF directly or via inhibition of prolyl hydroxylase enzymes, for therapy of IBD. In this Review, we discuss the signaling pathways involved in the regulation of hypoxia and discuss how hypoxia may serve as an endogenous alarm signal for the presence of mucosal inflammatory disease. We also discuss the pros and cons of targeting these pathways to treat patients with IBD.
364Scopus© Citations 331 - PublicationMonitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique(The Royal Society of Chemistry, 2010)
; ; ; Quenched-phosphorescence oxygen (O2) sensing technique allows non-invasive, real-time monitoring of both intra- and extracellular O2 concentration in respiring samples. Using this technique we investigated O2 gradients in populations of neurosecretory PC12 cells cultured in 96-well plates and exposed to graded hypoxia at rest and upon metabolic stimulation. Under high atmospheric O2 (10–21%) the respiration of resting cells dictated that local O2 was moderately reduced, and at a certain threshold (6% in galactose medium) cell layer became practically anoxic. Furthermore, cell stimulation triggered a major redistribution of O2 and a prominent ‘hypoxic overshoot’ mediated by diffusion. The deep, prolonged cell deoxygenation upon stimulation was matched by an increase in nuclear HIF-1α levels. In the presence of nitric oxide the hypoxic overshoot was truncated and HIF-1α stabilization inhibited. Thus, the main determinants which impact upon cellular O2 levels and oxygen-sensitive signaling pathways are the atmospheric O2, sample geometry, cell density, respiration rate and its dynamics. Changes in any of these parameters can significantly alter the O2 levels experienced by the cells and the subsequently activated signaling pathways. This technique, which provides simple and reliable monitoring of cell oxygenation, is therefore important for hypoxia research, metabolic studies and experiments with respiring cells.585Scopus© Citations 53 - PublicationHypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia(American Society for Biochemistry and Molecular Biology, 2016-05-27)
; ; ; ; ; ; ; ; ; ; ; Molecular oxygen and carbon dioxide are the primary gaseous substrate and product of oxidative metabolism, respectively. Hypoxia (low oxygen) and hypercapnia (high carbon dioxide) are co-incidental features of the tissue microenvironment in a range of pathophysiologic states, including acute and chronic respiratory diseases. The hypoxia-inducible factor (HIF) is the master regulator of the transcriptional response to hypoxia; however, little is known about the impact of hypercapnia on gene transcription. Because of the relationship between hypoxia and hypercapnia, we investigated the effect of hypercapnia on the HIF pathway. Hypercapnia suppressed HIF-α protein stability and HIF target gene expression both in mice and cultured cells in a manner that was at least in part independent of the canonical O2-dependent HIF degradation pathway. The suppressive effects of hypercapnia on HIF-α protein stability could be mimicked by reducing intracellular pH at a constant level of partial pressure of CO2 Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase that blocks lysosomal degradation, prevented the hypercapnic suppression of HIF-α protein. Based on these results, we hypothesize that hypercapnia counter-regulates activation of the HIF pathway by reducing intracellular pH and promoting lysosomal degradation of HIF-α subunits. Therefore, hypercapnia may play a key role in the pathophysiology of diseases where HIF is implicated.39Scopus© Citations 39 - PublicationBasic fibroblast growth factor modifies the hypoxic response of human bone marrow stromal cells by ERK-mediated enhancement of HIF-1α activity(Elsevier, 2014-05)
; ; ; ; ; Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are promising tools for the cellular therapy of human pathologies related to various forms of hypoxia. Although the current concepts of their clinical use include the expansion of hBMSC in standard cell culture conditions, the effect of the mitogen-driven ex vivo expansion on the adaptation to the hypoxic environment is unknown. Here, we provide data that the basic fibroblast growth factor (FGF2) enhances the induction of a wide range of hypoxia-related adaptive genes in hypoxic hBMSCs. We identified that the FGF2 signal is transmitted by the ERK pathway similar to that of hypoxia that also utilises the distal elements of the same signalling machinery including the extracellular signal-regulated kinase 1/2 (ERK1/2) and mitogen-activated protein kinase kinases (MEK1/2) in hBMSCs. We found that the simultaneous activation of ERK1/2 by FGF2 and hypoxia transforms the activation dynamics from oscillatory into sustained one. Activated ERKs co-localise with stabilised hypoxia inducible factor-1α (HIF-1α) followed by the reduction of its nuclear mobility as well as increased DNA binding capacity leading to the up-regulation of hypoxia-adaptive genes. Our findings indicate that the status of the ERK pathway has significant impacts on the molecular adaptation of hBMSCs to the hypoxic milieu.201Scopus© Citations 15 - PublicationCrosstalk between toll-like receptors and hypoxia-dependent pathways in health and diseaseToll-like receptors (TLRs) play an important role in shaping the host immune response to infection and inflammation. Tissue hypoxia is a common microenvironmental feature of infected and inflamed tissues. Furthermore, hypoxia significantly impacts the development of immune and inflammatory responses through the regulation of host innate and adaptive immunity. Here, we will discuss current knowledge in relation to the crosstalk that exists between toll-like receptor- and hypoxia-dependent signaling pathways in health and disease.
243Scopus© Citations 4 - PublicationHydroxylase-dependent regulation of the NF-κB pathwayHypoxia is associated with a diverse range of physiological and pathophysiological processes, including development, wound healing, inflammation, vascular disease and cancer. The requirement that eukaryotic cells have for molecular oxygen as the terminal electron acceptor for the electron transport chain means that the maintenance of oxygen delivery is key for bioenergetic homeostasis. Metazoans have evolved an effective way to adapt to hypoxic stress at the molecular level through a transcription factor termed the hypoxia inducible factor. A family of oxygen-sensing hydroxylases utilizes molecular oxygen as a co-substrate for the hydroxylation of hypoxia inducible factor α subunits, thereby reducing its expression and transcriptional activity when oxygen is available. Recent studies have indicated that other hypoxia-responsive transcriptional pathways may also be hydroxylase-dependent. In this review, we will discuss the role of hydroxylases in the regulation of NF-κB, a key regulator of immunity and inflammation. Developing our understanding of the role of hydroxylases in hypoxic inflammation may identify novel therapeutic approaches in chronic inflammatory disease.
423Scopus© Citations 34