Now showing 1 - 2 of 2
  • Publication
    Dawn and dusk peaks of outer segment phagocytosis, and visual cycle function require Rab28
    RAB28 is a farnesylated, ciliary G-protein. Patient variants in RAB28 are causative of autosomal recessive cone-rod dystrophy (CRD), an inherited human blindness. In rodent and zebrafish models, the absence of Rab28 results in diminished dawn, photoreceptor, outer segment phagocytosis (OSP). Here, we demonstrate that Rab28 is also required for dusk peaks of OSP, but not for basal OSP levels. This study further elucidated the molecular mechanisms by which Rab28 controls OSP and inherited blindness. Proteomic profiling identified factors whose expression in the eye or whose expression at dawn and dusk peaks of OSP is dysregulated by loss of Rab28. Notably, transgenic overexpression of Rab28, solely in zebrafish cones, rescues the OSP defect in rab28 KO fish, suggesting rab28 gene replacement in cone photoreceptors is sufficient to regulate Rab28-OSP. Rab28 loss also perturbs function of the visual cycle as retinoid levels of 11-cRAL, 11cRP, and atRP are significantly reduced in larval and adult rab28 KO retinae (p <.05). These data give further understanding on the molecular mechanisms of RAB28-associated CRD, highlighting roles of Rab28 in both peaks of OSP, in vitamin A metabolism and in retinoid recycling.
      47Scopus© Citations 2
  • Publication
    Non-photopic and photopic visual cycles differentially regulate immediate, early and late-phases of cone photoreceptor-mediated vision
    Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters (atRE) to 11-cis-retinol (11cROL) is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, whereas emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaption displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 minutes of light, early photopic vision recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde (9cRAL) supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the non-photopic or photopic visual cycles for mediating vision in bright light.
      211Scopus© Citations 12