Options
Hoshizaki, Thomas Blaine
Preferred name
Hoshizaki, Thomas Blaine
Official Name
Hoshizaki, Thomas Blaine
Research Output
Now showing 1 - 10 of 26
- PublicationThe relationship between impact condition and velocity on brain tissue response(International Society of Biomechanics, 2011)
; ; Injury reconstruction is a well accepted method for investigating the relationship between the event causing brain injury and the resulting trauma to neural tissue. Understanding the effect of the impact characteristics and velocity on the brain deformations is important when interpreting brain stress and strain values obtained from reconstructions. A finite element model (UCDBTM) was used to evaluate brain tissue response under varying impact conditions using an unhelmeted Hybrid III headform. This study was designed to evaluate the relationship between impact conditions and corresponding brain tissue response variables. The results revealed that the dynamic response curve created by different impacting conditions significantly influenced the maximum principal strain and Von Mises stress of brain tissue, providing valuable insight in the limitations of accident reconstruction from descriptive data.104 - PublicationDetermining the relationship between linear and rotational acceleration and MPS for different magnitudes of classified brain injury risk in ice hockey(International Research Council on the Biomechanics of Injury (IRCOBI), 2015-09-11)
; ; ; Helmets have successfully decreased the incidence of traumatic brain injuries (TBI) in ice hockey, yet the incidence of concussions has essentially remained unchanged. Current ice hockey helmet certification standards use peak linear acceleration as the principal measuring helmet performance, however peak linear acceleration may not be an appropriate variable to evaluate risk at all magnitudes of brain injury. The purpose of this study is to determine the relationship between linear acceleration, rotational acceleration and maximum principal strain (MPS) for different magnitudes of classified brain injury risk in ice hockey. A helmeted and unhelmeted Hybrid III headform were impacted to the side of the head at two sites and at three velocities under conditions representing three common mechanisms of injury. Resulting linear and rotational accelerations were used as input for the University College Dublin Brain Trauma Model (UCDBTM), to calculate MPS in the brain. The resulting MPS magnitudes were used to separate the data into three groups: low risk; concussion; and TBI. The results demonstrate that the relationship between injury metrics in ice hockey impacts is dependent on the magnitude of classified injury risk and the mechanism of injury.314 - PublicationThe dynamic response characteristics of traumatic brain injuryTraumatic brain injury (TBI) is a common injury and is a leading cause of morbidity and mortality throughout the world. Research has been undertaken in order to better understand the characteristics of the injury event and measure the risk of injury to develop more effective environmental, technological, and clinical management strategies. This research used methods that have limited applications to predicting human responses. This limits the current understanding of the mechanisms of TBI in humans. As a result, the purpose of this research was to examine the characteristics of impact and dynamic response that leads to a high risk of incurring a TBI in a human population. Twenty TBI events collected from hospital reports and eyewitness accounts were reconstructed in the laboratory using a combination of computational mechanics models and Hybrid III anthropometric dummy systems. All cases were falls, with an average impact velocity of approximately 4.0 m/s onto hard impact surfaces. The results of the methodology were consistent with current TBI research, describing TBI to occur in the range of 335 to 445 g linear accelerations and 23.7 to 51.2 krad/s2 53 angular accelerations. More significantly, this research demonstrated that lower responses in the antero-posterior direction can cause TBI, with lateral impact responses requiring larger magnitudes for the same types of brain lesions. This suggests an increased likelihood of incurring TBI for impacts to the front or back of the head, a result that has implications affecting current understanding of themechanisms of TBI and associated threshold parameters.
344 - PublicationThe influence of centric and non-centric impacts to American football helmets on the correlation between commonly metrics in brain injury research(International Research Council on the Biomechanics of Injury, 2012)
; ; ; Concussion has become recognized as an injury which can be a source of long term neurological damage. This has led to research into which metrics may be more appropriate to define risk of injury. Some researchers support the use of linear acceleration as a metric for concussion, while others suggest the use of linear and rotational acceleration as well as brain deformation metrics. The purpose of this study was to examine the relationships between these metrics using a centric and non‐centric impact protocol. A linear impactor was used to impact a Hybrid III headform fitted with different models of American football helmet using a centric and non‐centric protocol. The dynamic response was then used as input to the FE model for analysis of brain deformations. The results showed that linear acceleration was correlated to rotational acceleration and brain deformation for centric conditions, but under non‐centric conditions it was not. These results indicate that the type of methodology used will influence the relationship between the variables used to assign risk of concussion. These results also support the use of a centric/non‐centric protocol and measurement of rotational acceleration and brain deformation when it comes to the development of helmet technologies.318 - PublicationEstimating the influence of neckform compliance on brain tissue strain during a Helmeted impact(Society of Automotive Engineers, 2010-11)
; ; The aim of this study was to determine if a change in neckform compliance could influence maximum principal strain in the brain white and grey matter, the brain stem and the cerebellum. This was done by impacting a Hybrid III headform with a 16.6 kg impactor arm at 5 m/s. Three different Hybrid III neckforms were used: 1) one 50th percentile male neckform - standard neckform; 2) one 50th percentile male neckform plus 30 per cent compliance - soft neckform; 3) one 50th percentile male neckform minus 30 per cent compliance - stiff neckform. The kinematic data obtained was then used to drive a finite element model developed by University College Dublin. The results showed that a decrease in neckform compliance had a significant effect on maximal principal strain in the cerebellum, where the stiff neck (0.050 ± 0.004) generated higher maximum principal strains than the standard neck (0.036 ± 0.003) and the soft neck (0.037 ± 0.001). There were no significant differences between the stiff (0.122 ± 0.013), standard (0.114 ± 0.020) and soft neck (0.119 ± 0.019) in the white matter; the stiff (0.168 ± 0.011), standard (0.176 ± 0.011) and soft neck (0.176 ± 0.007) in the grey matter; or the stiff (0.080 ± 0.003), standard (0.081 ± 0.006) and soft neck (0.085 ± 0.009) in the brain stem. The results were not linked to brain injury due to the absence of a commonly accepted threshold.332 - PublicationThe influence of impact angle on the dynamic response of a Hybrid III headform and brain tissue deformationThe objective of this study was to investigate the influence of impact angle on the dynamic response of a Hybrid III headform and brain tissue deformation by impacting the front and side of the headform using four angle conditions (0°, at the impact site and 5, 10 and 15° rightward rotations of the headform from 0°) as well as three additional angle conditions of -5, - 10 and -15° (leftward rotations from 0°) at the side location to examine the effects of the neckform. The acceleration-time curves were used as input into a finite element model of the brain where maximum principal strain was calculated. The study found that an impact angle of 15° significantly influencesthe results when measured using linear and rotational acceleration and maximum principal strain. When developing sophisticated impact protocols and undertaking head injury reconstruction research, it is important to be aware of impact angle.
387 - PublicationProtective Capacity of Ice Hockey Helmets against Different Impact EventsIn ice hockey, concussions can occur as a result of many different types of impact events, however hockey helmets are certified using a single injury scenario, involving drop tests to a rigid surface. The purpose of this study is to measure the protective capacity of ice hockey helmets for different impact events in ice hockey. A helmeted and unhelmeted Hybrid III headform were impacted simulating falls, elbow, shoulder and puck impacts in ice hockey. Linear and rotational acceleration and maximum principal strain (MPS) were measured. A comparison of helmeted and unhelmeted impacts found significant differences existed in most conditions (p < 0.05), however some shoulder and puck impacts showed no significant difference (p > 0.05). Impacts to the ice hockey helmet tested resulted in acceleration levels below reported ranges of concussion and TBI for falls up to 5 m/s, elbow collisions, and low velocity puck impacts but not for shoulder collisions or high velocity puck impacts and falls. The helmet tested reduced MPS below reported ranges of concussion and TBI for falls up to 5 m/s but not for the other impact events across all velocities and locations. This suggests that the ice hockey helmet tested is unable to reduce engineering parameters below reported ranges of concussion and TBI for impact conditions which do not represent a drop against a rigid surface.
607Scopus© Citations 28 - PublicationAnalysis of the influence of independent variables used for reconstruction of a traumatic brain injury incidentTraumatic brain injuries contribute to a high degree of morbidity and mortality in society. To study traumatic brain injuries researchers reconstruct the event using both physical and FE models. The purpose of these reconstructions is to correlate the brain deformation metric to the type of injury as a measure for prediction. These reconstructions are guided by a series of independent variables which all have influence upon the outcome variables. This research uses a combination of physical and FE modelling to quantify how independent variables such as velocity and impact vector (angle) contribute to the resulting variance in brain deformation metrics. The results indicated that using a Hybrid III neck controls the rotational acceleration response from an impact. Also, it was found that strain rate and product of strain and strain rate were more sensitive to changes in impact angle. Linear acceleration decreased with increasing impact angle, while brain deformations did not follow this trend, which suggests that peak linear acceleration may not be the only factor in the production of larger brain deformations.
360Scopus© Citations 23 - PublicationThe effect of acceleration signal processing for head impact numeric simulations(Springer, 2016-06)
; ; ; ; Brain injury research in sport employs a variety of physical models equipped with accelerometers. These acceleration signals are commonly processed using filters. The purpose of this research was to determine the effect of applying filters with different cutoff frequencies to the acceleration signals used as input for finite element modelling of the brain. Signals were generated from reconstructions of concussion events from American football and ice hockey in the laboratory using a Hybrid III headform. The resulting acceleration signals were used as input for the University College Dublin Brain Trauma Model after being processed with filters. The results indicated that using a filter with a cutoff of 300 Hz or higher had little effect on the resulting strain measures. In some cases there was some effect of the filters on the peak linear (8¿30g) and rotational measures (1000¿4000 rad/s2), but little effect on the finite element strain result (approximately 2¿6 %). The short duration and high magnitude accelerations, such as the puck impact, were most affected by the cutoff frequency of different filters.1647Scopus© Citations 18 - PublicationProtective capacity of an ice hockey goaltender helmet for three events associated with concussionThe purpose of this study was to assess the protective capacity of an ice hockey goaltender helmet for three concussive impact events. A helmeted and unhelmeted headform was used to test three common impact events in ice hockey (fall, puck impacts and shoulder collisions). Peak linear acceleration, rotational acceleration and rotational velocity as well as maximum principal strain and von Mises stress were measured for each impact condition. The results demonstrated the tested ice hockey goaltender helmet was well designed to manage fall and puck impacts but does not consistently protect against shoulder collisions and an opportunity may exist to improve helmet designs to better protect goaltenders from shoulder collisions.
449Scopus© Citations 14
- «
- 1 (current)
- 2
- 3
- »