Now showing 1 - 9 of 9
  • Publication
    Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration
    There are a multitude of studies made and ongoing related to cost of wind integration. However, the results are not easy to compare. An international forum for exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. IEA WIND R&D Task 25 on “Design and Operation of Power Systems with Large Amounts of Wind Power” has produced a state of the art report in October 2007, where the most relevant wind power grid integration studies are analysed especially regarding methodologies and input data. This paper summarises the results from 18 case studies with discussion on the differences in the methodology as well as issues that have been identified to impact the cost of wind integration.
  • Publication
    Demand side resource operation on the Irish power system with high wind power penetration
    The utilisation of demand side resources is set to increase over the coming years with the advent of advanced metering infrastructure, home area networks and the promotion of increased energy efficiency. Demand side resources are proposed as an energy resource that, through aggregation, can form part of the power system plant mix and contribute to the flexible operation of a power system. A model for demand side resources is proposed here that captures its key characteristics for commitment and dispatch calculations. The model is tested on the all island Irish power system, and the operation of the model is simulated over one year in both a stochastic and deterministic mode, to illustrate the impact of wind and load uncertainty. The results illustrate that demand side resources can contribute to the efficient, flexible operation of systems with high penetrations of wind by replacing some of the functions of conventional peaking plant. Demand side resources are also shown to be capable of improving the reliability of the system, with reserve capability identified as a key requirement in this respect.
      870Scopus© Citations 67
  • Publication
    Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration
    (Wiley Blackwell (John Wiley & Sons), 2011-03-14) ; ; ;
    There are dozens of studies made and ongoing related to wind integration. However, the results are not easy to compare. IEA WIND R&D Task 25 on ‘Design and Operation of Power Systems with Large Amounts of Wind Power’ collects and shares information on wind generation impacts on power systems, with analyses and guidelines on methodologies. In the state-of-the-art report (October, 2007), and the final report of the 3 years period (July, 2009) the most relevant wind power grid integration studies have been analysed especially regarding methodologies and input data. Several issues that impact on the amount of wind power that can be integrated have been identified. Large balancing areas and aggregation benefits of wide areas help in reducing the variability and forecast errors of wind power as well as help in pooling more cost effective balancing resources. System operation and functioning electricity markets at less than day-ahead time scales help reduce forecast errors of wind power. Transmission is the key to aggregation benefits, electricity markets and larger balancing areas. Best practices in wind integration studies are described. There is also benefit when adding wind power to power systems: it reduces the total operating costs and emissions as wind replaces fossil fuels and this should be highlighted more in future studies.
      4480Scopus© Citations 258
  • Publication
    Unit commitment for systems with significant wind penetration
    The stochastic nature of wind alters the unit commitment and dispatch problem. By accounting for this uncertainty when scheduling the system, more robust schedules are produced, which should, on average, reduce expected costs. In this paper, the effects of stochastic wind and load on the unit commitment and dispatch of power systems with high levels of wind power are examined. By comparing the costs, planned operation and performance of the schedules produced, it is shown that stochastic optimization results in less costly, of the order of 0.25%, and better performing schedules than deterministic optimization. The impact of planning the system more frequently to account for updated wind and load forecasts is then examined. More frequent planning means more up to date forecasts are used, which reduces the need for reserve and increases performance of the schedules. It is shown that mid-merit and peaking units and the interconnection are the most affected parts of the system where uncertainty of wind is concerned.
      3130Scopus© Citations 578
  • Publication
    Stochastic Optimization Model to Study the Operational Impacts of High Wind Penetrations in Ireland
    (Institute of Electrical and Electronics Engineers, 2011-08) ; ; ;
    A stochastic mixed integer linear optimization scheduling model minimizing system operation costs and treating load and wind power production as stochastic inputs is presented. The schedules are updated in a rolling manner as more up-to-date information becomes available. This is a fundamental change relative to day-ahead unit commitment approaches. The need for reserves dependent on forecast horizon and share of wind power has been estimated with a statistical model combining load and wind power forecast errors with scenarios of forced outages. The model is used to study operational impacts of future high wind penetrations for the island of Ireland. Results show that at least 6000 MW of wind (34% of energy demand) can be integrated into the island of Ireland without significant curtailment and reliability problems.
      2417Scopus© Citations 266
  • Publication
    Impact of wind power on the unit commitment, operating reserves, and market design
    This article highlights and demonstrates the new requirements variable and partly unpredictable wind power will bring to unit commitment and power system operations. Current practice is described and contrasted against the new requirements. Literature specifically addressing questions about wind power and unit commitment related power system operations is surveyed. The scope includes forecast errors, operating reserves, intra-day markets, and sharing reserves across interconnections. The discussion covers the critical issues arising from the research.
      867Scopus© Citations 36
  • Publication
    Short-Term Energy Balancing With Increasing Levels of Wind Energy
    (Institute of Electrical and Electronics Engineers, 2012-10) ; ; ;
    Increasing levels of wind energy are adding to the uncertainty and variability inherent in electricity grids and are consequently driving changes. Here, some of the possible evolutions in optimal short-term energy balancing to better deal with wind energy uncertainty are investigated. The focus is mainly on managing reserves through changes in scheduling, in particular market structure (more regular and higher resolution scheduling), reserve procurement (dynamic as opposed to static), and improved operational planning (stochastic as opposed to deterministic). Infrastructure changes including flexible plant, increased demand side participation, more interconnection, transmission, larger balancing areas, and critically improved forecasting can also be significant and are dealt with in the discussion. The evolutions are tightly coupled, their impact is system-dependent and so no “best” set is identifiable but experience of system operators will be critical to future developments.
      1804Scopus© Citations 52
  • Publication
    New tool for integration of wind power forecasting into power system operation
    The paper describes the methodology that has been developed for Transmission System Operators (TSOs) of Republic of Ireland, Eirgrid, and Northern Ireland, SONI the TSO in Northern Ireland, to study the effects of advanced wind power forecasting on optimal short-term power system scheduling. The resulting schedules take into account the electricity market conditions and feature optimal reserve scheduling. The short-term wind power prediction is provided by the Anemos tool, and the scheduling function, including the reserve optimisation, by the Wilmar tool. The proposed methodology allows for evaluation of the impacts that different types of wind energy forecasts (stochastic vs. deterministic vs. perfect) have on the schedules, and how the new incoming information via in-day scheduling impacts the quality of the schedules. Within the methodology, metrics to assess the quality of the schedules is proposed, including the costs, reliability and cycling. The resulting schedules are compared to the Day-ahead and In-day results of the existing scheduling methodology, Reserve Constrained Unit Commitment (RCUC), with the historical data used as the input for calibration.
      2131Scopus© Citations 9
  • Publication
    Operating the Irish power system with increased levels of wind power
    This paper summarises some of the main impacts of large amounts of wind power installed in the island of Ireland. Using results from various studies performed on this system, it is shown that wind power will impact on all time frames, from seconds to daily planning of the system operation. Results from studies examining operation of the system with up to approximately 40% of electricity provided by wind show that some of the most important aspects to be considered include the type of wind turbine technology, the provision of reserve to accommodate wind forecasting error and the method used to plan plant schedules.
      788Scopus© Citations 12