Now showing 1 - 2 of 2
  • Publication
    Development and testing of a sandwich panel with UHPC and PCM concrete layers
    Precast concrete sandwich panels provide a thermally efficient alternative to conventional brick and mortar construction and improve the energy efficiency of existing buildings. This project comprised the design and testing of a sample re-cladding panel composed of a phase change material (PCM) in the concrete inner wythe (for thermal efficiency) and a thin ultra-high performance concrete (UHPC) outer wythe, joined compositely using a C-grid shear connector. Six different concrete mixes were prepared and structurally tested in compression and flexure. A concrete sandwich panel was cast using two of the best performing mixes and subsequently tested in three-point bending to investigate its flexural performance. The strongest PCM and UHPC concretes had average compressive and flexural strengths of 25MPa and 5.1MPa, and 121MPa and 9.2MPa respectively. The 900mm span panel tested in flexure reached its serviceability limit at 10kN, with ultimate peak load occurring at 97kN. Post-peak behaviour illustrated the role of the shear connector in allowing composite action to occur.
  • Publication
    Design and manufacture of a precast PCM enhanced concrete cladding panel for full scale performance monitoring
    The overall aim of this study is to develop innovative precast cladding panels for the renovation of Europe’s existing building stock thereby improving their energy performance. Using the mass of a building to store heat and/or cold can reduce the demand on the auxiliary heating and/or cooling systems and hence reduce the overall energy demand of the building. Previous laboratory research has shown that the incorporation of phase change materials (PCMs) into concrete enhances its thermal storage capacity by up to 50%. However in a real application where a PCM-concrete composite material is used in a building to store thermal energy, the effectiveness of the PCM depends on many variables including the form of construction and local climate conditions. In this research study a precast cladding panel formed with PCM enhanced concrete has been developed and manufactured. In order to observe the performance of the PCM-concrete composite panels in a full scale scenario, three demonstration huts have been constructed and instrumented to record internal thermal behaviour. Monitoring of the data is ongoing and shows that the effectiveness of the PCM varies with the seasons. Data recorded during the summer period highlighted that the internal temperature may not drop low enough during the night to solidify the PCM and discharge the stored heat. A further test in which passive ventilation was provided during the night proved to be an effective method of addressing this issue. It is expected that this long term study will enable recommendations to be made on the seasonal benefits of using PCM-concrete to enhance the energy performance of buildings located in climate conditions similar to Ireland. The results of the data analysis will inform a refinement of the panel design prior to installing the panels at a school in the UK which currently has an overheating problem.