Now showing 1 - 9 of 9
  • Publication
    Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity
    The conventional wisdom is that certain classes of bioactive peptides have specific structural features that endow their particular functions. Accordingly, predictions of bioactivity have focused on particular subgroups, such as antimicrobial peptides. We hypothesized that bioactive peptides may share more general features, and assessed this by contrasting the predictive power of existing antimicrobial predictors as well as a novel general predictor, PeptideRanker, across different classes of peptides.We observed that existing antimicrobial predictors had reasonable predictive power to identify peptides of certain other classes i.e. toxin and venom peptides. We trained two general predictors of peptide bioactivity, one focused on short peptides (4-20 amino acids) and one focused on long peptides (>20 amino acids). These general predictors had performance that was typically as good as, or better than, that of specific predictors. We noted some striking differences in the features of short peptide and long peptide predictions, in particular, high scoring short peptides favour phenylalanine. This is consistent with the hypothesis that short and long peptides have different functional constraints, perhaps reflecting the difficulty for typical short peptides in supporting independent tertiary structure.We conclude that there are general shared features of bioactive peptides across different functional classes, indicating that computational prediction may accelerate the discovery of novel bioactive peptides and aid in the improved design of existing peptides, across many functional classes. An implementation of the predictive method, PeptideRanker, may be used to identify among a set of peptides those that may be more likely to be bioactive.
      2562Scopus© Citations 340
  • Publication
    SLiMFinder : a web server to find novel, significantly over-represented, short protein motifs
    Short, linear motifs (SLiMs) play a critical role in many biological processes, particularly in protein–protein interactions. The Short, Linear Motif Finder (SLiMFinder) web server is a de novo motif discovery tool that identifies statistically over-represented motifs in a set of protein sequences, accounting for the evolutionary relationships between them. Motifs are returned with an intuitive P-value that greatly reduces the problem of false positives and is accessible to biologists of all disciplines. Input can be uploaded by the user or extracted directly from UniProt. Numerous masking options give the user great control over the contextual information to be included in the analyses. The SLiMFinder server combines these with user-friendly output and visualizations of motif context to allow the user to quickly gain insight into the validity of a putatively functional motif. These visualizations include alignments of motif occurrences, alignments of motifs and their homologues and a visual schematic of the top-ranked motifs. Returned motifs can also be compared with known SLiMs from the literature using CompariMotif. All results are available for download. The SLiMFinder server is available at: http://bioware.ucd.ie/slimfinder.html.
      2153Scopus© Citations 62
  • Publication
    Profile-based short linear protein motif discovery
    (BioMed Central, 2012-05-18) ;
    Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3-10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.
      4630Scopus© Citations 15
  • Publication
    PeptideLocator: prediction of bioactive peptides in protein sequences
    Motivation: Peptides play important roles in signalling, regulation and immunity within an organism. Many have successfully been used as therapeutic products often mimicking naturally occurring peptides. Here we present PeptideLocator for the automated prediction of functional peptides in a protein sequence. Results: We have trained a machine learning algorithm to predict bioactive peptides within protein sequences. PeptideLocator performs well on training data achieving an area under the curve of 0.92 when tested in 5-fold cross-validation on a set of 2202 redundancy reduced peptide containing protein sequences. It has predictive power when applied to antimicrobial peptides, cytokines, growth factors, peptide hormones, toxins, venoms and other peptides. It can be applied to refine the choice of experimental investigations in functional studies of proteins.
      327Scopus© Citations 67
  • Publication
    Optimal Probe Length Varies for Targets with High Sequence Variation: Implications for Probe Library Design for Resequencing Highly Variable Genes
    Sequencing by hybridisation is an effective method for obtaining large amounts of DNA sequence information at low cost. The efficiency of SBH depends on the design of the probe library to provide the maximum information for minimum cost. Long probes provide a higher probability of non-repeated sequences but lead to an increase in the number of probes required whereas short probes may not provide unique sequence information due to repeated sequences. We have investigated the effect of probe length, use of reference sequences, and thermal filtering on the design of probe libraries for several highly variable target DNA sequences. Results We designed overlapping probe libraries for a range of highly variable drug target genes based on known sequence information and develop a formal terminology to describe probe library design. We find that for some targets these libraries can provide good coverage of a previously unseen target whereas for others the coverage is less than 30%. The optimal probe length varies from as short at 12 nt to as large as 19 nt and depends on the sequence, its variability, and the stringency of thermal filtering. It cannot be determined from inspection of an example gene sequence. Conclusions Optimal probe length and the optimal number of reference sequences used to design a probe library are highly target specific for highly variable sequencing targets. The optimum design cannot be determined simply by inspection of input sequences or of alignments but only by detailed analysis of the each specific target. For highly variable sequences, shorter probes can in some cases provide better information than longer probes. Probe library design would benefit from a general purpose tool for analysing these issues. The formal terminology developed here and the analysis approaches it is used to describe will contribute to the development of such tools.
      263Scopus© Citations 3
  • Publication
    SLiMSearch : a webserver for finding novel occurrences of short linear motifs in proteins, incorporating sequence context
    Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch (Short, Linear Motif Search) webserver is a flexible tool that enables researchers to identify novel occurrences of pre- defined SLiMs in sets of proteins. Numerous masking options give the user great control over the contextual information to be included in the analyses, including evolutionary filtering and protein structural disorder. User-friendly output and visualizations of motif context allow the user to quickly gain insight into the validity of a putatively functional motif occurrence. Users can search motifs against the human proteome, or submit their own datasets of UniProt proteins, in which case motif support within the dataset is statistically assessed for over- and under-representation, accounting for evolutionary relationships between input proteins. SLiMSearch is freely available as open source Python modules and all webserver results are available for download. The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch.html.
    Scopus© Citations 10  585
  • Publication
    Prediction of short linear protein binding regions
    Short linear motifs in proteins (typically 3–12 residues in length) play key roles in protein–protein interactions by frequently binding specifically to peptide binding domains within interacting proteins. Their tendency to be found in disordered segments of proteins has meant that they have often been overlooked. Here we present SLiMPred (short linear motif predictor), the first general de novo method designed to computationally predict such regions in protein primary sequences independent of experimentally defined homologs and interactors. The method applies machine learning techniques to predict new motifs based on annotated instances from the Eukaryotic Linear Motif database, as well as structural, biophysical, and biochemical features derived from the protein primary sequence. We have integrated these data sources and benchmarked the predictive accuracy of the method, and found that it performs equivalently to a predictor of protein binding regions in disordered regions, in addition to having predictive power for other classes of motif sites such as polyproline II helix motifs and short linear motifs lying in ordered regions. It will be useful in predicting peptides involved in potential protein associations and will aid in the functional characterization of proteins, especially of proteins lacking experimental information on structures and interactions. We conclude that, despite the diversity of motif sequences and structures, SLiMPred is a valuable tool for prioritizing potential interaction motifs in proteins.
      9924Scopus© Citations 63
  • Publication
    ELM--the database of eukaryotic linear motifs
    Linear motifs are short, evolutionarily plastic components of regulatory proteins and provide low-affinity interaction interfaces. These compact modules play central roles in mediating every aspect of the regulatory functionality of the cell. They are particularly prominent in mediating cell signaling, controlling protein turnover and directing protein localization. Given their importance, our understanding of motifs is surprisingly limited, largely as a result of the difficulty of discovery, both experimentally and computationally. The Eukaryotic Linear Motif (ELM) resource at http://elm.eu.org provides the biological community with a comprehensive database of known experimentally validated motifs, and an exploratory tool to discover putative linear motifs in user-submitted protein sequences. The current update of the ELM database comprises 1800 annotated motif instances representing 170 distinct functional classes, including approximately 500 novel instances and 24 novel classes. Several older motif class entries have been also revisited, improving annotation and adding novel instances. Furthermore, addition of full-text search capabilities, an enhanced interface and simplified batch download has improved the overall accessibility of the ELM data. The motif discovery portion of the ELM resource has added conservation, and structural attributes have been incorporated to aid users to discriminate biologically relevant motifs from stochastically occurring non-functional instances.
      400Scopus© Citations 260
  • Publication
    SLiMSearch 2.0 : biological context for short linear motifs in proteins
    Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch 2.0 (Short, Linear Motif Search) web server allows researchers to identify occurrences of a user-defined SLiM in a proteome, using conservation and protein disorder context statistics to rank occurrences. User-friendly output and visualizations of motif context allow the user to quickly gain insight into the validity of a putatively functional motif occurrence. For each motif occurrence, overlapping UniProt features and annotated SLiMs are displayed. Visualization also includes annotated multiple sequence alignments surrounding each occurrence, showing conservation and protein disorder statistics in addition to known and predicted SLiMs, protein domains and known post-translational modifications. In addition, enrichment of Gene Ontology terms and protein interaction partners are provided as indicators of possible motif function. All web server results are available for download. Users can search motifs against the human proteome or a subset thereof defined by Uniprot accession numbers or GO term. The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch2.html.
      2285Scopus© Citations 63