Now showing 1 - 3 of 3
  • Publication
    Systems medicine: helping us understand the complexity of disease
    Advances in genomics and other -omic fields in the last decade have resulted in unprecedented volumes of complex data now being available. These data can enable physicians to provide their patients with care that is more personalized, predictive, preventive and participatory. The expertise required to manage and understand this data is to be found in fields outside of medical science, thus multidisciplinary collaboration coupled to a systems approach is key to unlocking its potential, with concomitant new ways of working. Systems medicine can build on the successes in the field of systems biology, recognizing the human body as the multidimensional network of networks that it is. While systems medicine can provide a conceptual and theoretical framework, its practical goal is to provide physicians the tools necessary for harnessing the rapid advances in basic biomedical science into their routine clinical arsenal.
      274Scopus© Citations 24
  • Publication
    Systems biology embedded target validation: improving efficacy in drug discovery
    The pharmaceutical industry is faced with a range of challenges with the ever-escalating costs of drug development and a drying out of drug pipelines. By harnessing advances in -omics technologies and moving away from the standard, reductionist model of drug discovery, there is significant potential to reduce costs and improve efficacy. Embedding systems biology approaches in drug discovery, which seek to investigate underlying molecular mechanisms of potential drug targets in a network context, will reduce attrition rates by earlier target validation and the introduction of novel targets into the currently stagnant market. Systems biology approaches also have the potential to assist in the design of multidrug treatments and repositioning of existing drugs, while stratifying patients to give a greater personalization of medical treatment.
      2718Scopus© Citations 19
  • Publication
    Robustness and Evolvability of the Human Signaling Network
    Biological systems are known to be both robust and evolvable to internal and external perturbations, but what causes these apparently contradictory properties? We used Boolean network modeling and attractor landscape analysis to investigate the evolvability and robustness of the human signaling network. Our results show that the human signaling network can be divided into an evolvable core where perturbations change the attractor landscape in state space, and a robust neighbor where perturbations have no effect on the attractor landscape. Using chemical inhibition and overexpression of nodes, we validated that perturbations affect the evolvable core more strongly than the robust neighbor. We also found that the evolvable core has a distinct network structure, which is enriched in feedback loops, and features a higher degree of scale-freeness and longer path lengths connecting the nodes. In addition, the genes with high evolvability scores are associated with evolvability-related properties such as rapid evolvability, low species broadness, and immunity whereas the genes with high robustness scores are associated with robustness-related properties such as slow evolvability, high species broadness, and oncogenes. Intriguingly, US Food and Drug Administration-approved drug targets have high evolvability scores whereas experimental drug targets have high robustness scores.
      270Scopus© Citations 22