Now showing 1 - 4 of 4
  • Publication
    Nonlinear signalling networks and cell-to-cell variability transform external signals into broadly distributed or bimodal responses
    We show theoretically and experimentally a mechanism behind the emergence of wide or bimodal protein distributions in biochemical networks with nonlinear input–output characteristics (the dose–response curve) and variability in protein abundance. Large cell-to-cell variation in the nonlinear dose–response characteristics can be beneficial to facilitate two distinct groups of response levels as opposed to a graded response. Under the circumstances that we quantify mathematically, the two distinct responses can coexist within a cellular population, leading to the emergence of a bimodal protein distribution. Using flow cytometry, we demonstrate the appearance of wide distributions in the hypoxia-inducible factor-mediated response network in HCT116 cells. With help of our theoretical framework, we perform a novel calculation of the magnitude of cell-to-cell heterogeneity in the dose–response obtained experimentally.
      392Scopus© Citations 18
  • Publication
    Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches
    Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches.
      322Scopus© Citations 109
  • Publication
    Mammalian protein expression noise: scaling principles and the implications for knockdown experiments
    The abundance of a particular protein varies both over time within a single mammalian cell and between cells of a genetically identical population. Here, we investigate the properties of such noisy protein expression in mammalian cells by combining theoretical and experimental approaches. The gamma distribution model is well-known to describe cell-to-cell variability in protein expression in a variety of common scenarios. This model predicts, and experiments show, that when protein levels are manipulated by altering transcription rates or mRNA half-life, protein expression noise, defined as the squared coefficient of variation, is constant. In contrast, we also demonstrate that when protein levels are manipulated by changing protein half-life, as mean levels increase, noise decreases. Thus, in mammalian cells, the scaling relationship between mean protein levels and expression noise depends on how mean levels are perturbed. Therefore it may be important to consider how common experimental manipulations of pro in expression affect not only mean levels, but also noise levels. In the context of knockdown experiments, natural cell-tocell variability in protein expression implies that a particular cell from the knockdown population may have higher protein levels than a cell from the control population. Simulations and experimental data suggest that approximately three-fold knockdown in mean expression levels can reduce such so-called “overlap probability” to less than ~10%. This has implications for the interpretation of knockdown experiments when the readout is a single cell measure.
      391Scopus© Citations 10
  • Publication
    Stabilization of C-RAF:KSR1 complex by DiRas3 reduces availability of C-RAF for dimerization with B-RAF
    RAF family kinases are central components of the Ras-RAF-MEK-ERK cascade. Dimerization is a key mechanism of RAF activation in response to physiological, pathological and pharmacological signals. It is mediated by a dimer interface region in the RAF kinase domain that is also conserved in KSR, a scaffolding protein that binds RAF, MEK and ERK. The regulation of RAF dimerization is incompletely understood. Especially little is known about the molecular mechanism involved in the selection of the dimerization partner. Previously, we reported that Ras-dependent binding of the tumour suppressor DiRas3 to C-RAF inhibits the C-RAF:B-RAF heterodimerization. Here we show that DiRas3 binds to KSR1 independently of its interaction with activated Ras and RAF. Our data also suggest that depending on the local stoichiometry between DiRas3 and oncogenic Ras, DiRas3 can either enhance homodimerization of KSR1 or recruit KSR1 to the Ras:C-RAF complex and thereby reduce the availability of C-RAF for binding to B-RAF. This mechanism, which is shared between A-RAF and C-RAF, may be involved in the regulation of Ras12V-induced cell transformation by DiRas3.
      476Scopus© Citations 5