Now showing 1 - 2 of 2
  • Publication
    Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling
    The aryl hydrocarbon receptor (AHR) is a major transcription factor regulated by different mechanisms. The classical view of AHR activation by xenobiotics needs to be amended by recent findings on the regulation of AHR by endogenous ligands and by crosstalk with other signaling pathways. In the cytosol the AHR recruits a large number of binding partners, including HSP90, p23, XAP2 and the ubiquitin ligases cullin 4B and CHIP. Furthermore, XAP2 binds the cyclic nucleotide phosphodiesterases PDE2A and PDE4A5. PDE2A inhibits nuclear translocation of AHR suggesting an important regulatory role of cyclic nucleotides in AHR trafficking. Signaling involving cAMP is organized in subcellular compartments and a distinct cAMP compartment might be required for proper AHR mobility and function. We conclude that the AHR complex integrates ligand binding and cyclic nucleotide signaling to generate an adequate transcriptional response.
    Scopus© Citations 19  602
  • Publication
    Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor
    (American Society for Biochemistry and Molecular Biology, 2007-05-04) ; ; ; ;
    Phosphodiesterase type 2A (PDE2A) hydrolyzes cyclic nucleotides cAMP and cGMP, thus efficiently controlling cNMP-dependent signaling pathways. PDE2A is composed of an amino-terminal region, two regulatory GAF domains, and a catalytic domain. Cyclic nucleotide hydrolysis is known to be activated by cGMP binding to GAF-B; however, other mechanisms may operate to fine-tune local cyclic nucleotide levels. In a yeast two-hybrid screening we identified XAP2, a crucial component of the aryl hydrocarbon receptor (AhR) complex, as a major PDE2A-interacting protein. We mapped the XAP2 binding site to the GAF-B domain of PDE2A. PDE assays with purified proteins showed that XAP2 binding does not change the enzymatic activity of PDE2A. To analyze whether PDE2A could affect the function of XAP2, we studied nuclear translocation of AhR, i.e. the master transcription factor controlling the expression of multiple detoxification genes. Notably, regulation of AhR target gene expression is initiated by tetrachlorodibenzodioxin (TCDD) binding to AhR and by a poorly understood cAMP-dependent pathway followed by the translocation of AhR from the cytosol into the nucleus. Binding of PDE2A to XAP2 inhibited TCDD- and cAMP-induced nuclear translocation of AhR in Hepa1c1c7 hepatocytes. Furthermore, PDE2A attenuated TCDD-induced transcription in reporter gene assays. We conclude that XAP2 targets PDE2A to the AhR complex, thereby restricting AhR mobility, possibly by a local reduction of cAMP levels. Our results provide first insights into the elusive cAMP-dependent regulation of AhR.
    Scopus© Citations 92  450