Now showing 1 - 2 of 2
  • Publication
    The Role of Nano-systems in the Delivery of Glucose-lowering Drugs for the Pre-emption and Treatment of Diabetes-associated Atherosclerosis
    (American Physiological Society, 2024-03-19) ; ; ;
    Diabetes is one of the most prevalent diseases worldwide. In recent decades, type-2 diabetes has become increasingly common, particularly in younger individuals. Diabetes leads to many vascular complications, including atherosclerosis. Atherosclerosis is a cardiovascular disease characterized by lipid-rich plaques within the vasculature. Plaques develop over time, restricting blood flow; and can therefore be the underlying cause of major adverse cardiovascular events, including myocardial infarction and stroke. Diabetes and atherosclerosis are intrinsically linked. Diabetes is a metabolic syndrome which accelerates atherosclerosis and increases the risk of developing other co-morbidities, such as Diabetes-associated Atherosclerosis (DAA). Gold-standard anti-diabetic medications focus on attenuating hyperglycemia. Though recent evidence suggests that glucose-lowering drugs may have broader applications, beyond diabetes-management. This review mainly evaluates the role of glucagon-like peptide-1 receptor agonists (GLP-1 RA), such as Liraglutide and Semaglutide in DAA. These drugs mimic gut hormones (incretins), which inhibit glucagon secretion whilst stimulating insulin secretion, thus improving insulin sensitivity. This facilitates delayed gastric emptying and increased patient satiety; hence they are also indicated for the treatment of obesity. GLP-1 RAs have significant cardioprotective effects, including decreasing low-density lipoprotein (LDL)-cholesterol and triglycerides levels. Liraglutide and Semaglutide have specifically been shown to decrease cardiovascular risk. Liraglutide has displayed a myriad of anti-atherosclerotic properties, with the potential to induce plaque regression. This review aims to address how glucose-lowering medications can be applied to treat diseases other than diabetes. We specifically focus on how nanomedicines can be used for the site-specific delivery of anti-diabetic medicines for the treatment of diabetes-associated atherosclerosis.
      4
  • Publication
    Specialized Pro-resolving Lipid Mediators: Modulation of Diabetes-Associated Cardio-, Reno-, and Retino-Vascular Complications
    Diabetes and its associated chronic complications present a healthcare challenge on a global scale. Despite improvements in the management of chronic complications of the micro-/macro-vasculature, their growing prevalence and incidence highlights the scale of the problem. It is currently estimated that diabetes affects 425 million people globally and it is anticipated that this figure will rise by 2025 to 700 million people. The vascular complications of diabetes including diabetes-associated atherosclerosis and kidney disease present a particular challenge. Diabetes is the leading cause of end stage renal disease, reflecting fibrosis leading to organ failure. Moreover, diabetes associated states of inflammation, neo-vascularization, apoptosis and hypercoagulability contribute to also exacerbate atherosclerosis, from the metabolic syndrome to advanced disease, plaque rupture and coronary thrombosis. Current therapeutic interventions focus on regulating blood glucose, glomerular and peripheral hypertension and can at best slow the progression of diabetes complications. Recently advanced knowledge of the pathogenesis underlying diabetes and associated complications revealed common mechanisms, including the inflammatory response, insulin resistance and hyperglycemia. The major role that inflammation plays in many chronic diseases has led to the development of new strategies aiming to promote the restoration of homeostasis through the “resolution of inflammation.” These strategies aim to mimic the spontaneous activities of the ‘specialized pro-resolving mediators’ (SPMs), including endogenous molecules and their synthetic mimetics. This review aims to discuss the effect of SPMs [with particular attention to lipoxins (LXs) and resolvins (Rvs)] on inflammatory responses in a series of experimental models, as well as evidence from human studies, in the context of cardio- and reno-vascular diabetic complications, with a brief mention to diabetic retinopathy (DR). These data collectively support the hypothesis that endogenously generated SPMs or synthetic mimetics of their activities may represent lead molecules in a new discipline, namely the ‘resolution pharmacology,’ offering hope for new therapeutic strategies to prevent and treat, specifically, diabetes-associated atherosclerosis, nephropathy and retinopathy.
      541Scopus© Citations 26