Options
Halldorsson, Thorhallur
Preferred name
Halldorsson, Thorhallur
Official Name
Halldorsson, Thorhallur
Research Output
Now showing 1 - 3 of 3
- PublicationThe principles and methods behind EFSA's Guidance on Uncertainty Analysis in Scientific Assessment(Wiley, 2018-01-24)
; ; ; ; To meet the general requirement for transparency in EFSA's work, all its scientific assessments must consider uncertainty. Assessments must say clearly and unambiguously what sources of uncertainty have been identified and what is their impact on the assessment conclusion. This applies to all EFSA's areas, all types of scientific assessment and all types of uncertainty affecting assessment. This current Opinion describes the principles and methods supporting a concise Guidance Document on Uncertainty in EFSA's Scientific Assessment, published separately. These documents do not prescribe specific methods for uncertainty analysis but rather provide a flexible framework within which different methods may be selected, according to the needs of each assessment. Assessors should systematically identify sources of uncertainty, checking each part of their assessment to minimise the risk of overlooking important uncertainties. Uncertainty may be expressed qualitatively or quantitatively. It is neither necessary nor possible to quantify separately every source of uncertainty affecting an assessment. However, assessors should express in quantitative terms the combined effect of as many as possible of identified sources of uncertainty. The guidance describes practical approaches. Uncertainty analysis should be conducted in a flexible, iterative manner, starting at a level appropriate to the assessment and refining the analysis as far as is needed or possible within the time available. The methods and results of the uncertainty analysis should be reported fully and transparently. Every EFSA Panel and Unit applied the draft Guidance to at least one assessment in their work area during a trial period of one year. Experience gained in this period resulted in improved guidance. The Scientific Committee considers that uncertainty analysis will be unconditional for EFSA Panels and staff and must be embedded into scientific assessment in all areas of EFSA's work.897Scopus© Citations 188 - PublicationGuidance on Uncertainty Analysis in Scientific Assessments(Wiley, 2018-01-24)
; ; ; ; Uncertainty analysis is the process of identifying limitations in scientific knowledge and evaluating their implications for scientific conclusions. It is therefore relevant in all EFSA's scientific assessments and also necessary, to ensure that the assessment conclusions provide reliable information for decision-making. The form and extent of uncertainty analysis, and how the conclusions should be reported, vary widely depending on the nature and context of each assessment and the degree of uncertainty that is present. This document provides concise guidance on how to identify which options for uncertainty analysis are appropriate in each assessment, and how to apply them. It is accompanied by a separate, supporting opinion that explains the key concepts and principles behind this Guidance, and describes the methods in more detail.498Scopus© Citations 250 - PublicationGuidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health(Wiley, 2018-07-04)
; ; ; ; The European Food Safety Authority has produced this Guidance on human and animal health aspects (Part 1) of the risk assessment of nanoscience and nanotechnology applications in the food and feed chain. It covers the application areas within EFSA's remit, e.g. novel foods, food contact materials, food/feed additives and pesticides. The Guidance takes account of the new developments that have taken place since publication of the previous Guidance in 2011. Potential future developments are suggested in the scientific literature for nanoencapsulated delivery systems and nanocomposites in applications such as novel foods, food/feed additives, biocides, pesticides and food contact materials. Therefore, the Guidance has taken account of relevant new scientific studies that provide more insights to physicochemical properties, exposure assessment and hazard characterisation of nanomaterials. It specifically elaborates on physicochemical characterisation of nanomaterials in terms of how to establish whether a material is a nanomaterial, the key parameters that should be measured, the methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. It also details the aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vivo/in vitro toxicological studies are discussed and a tiered framework for toxicological testing is outlined. It describes in vitro degradation, toxicokinetics, genotoxicity as well as general issues relating to testing of nanomaterials. Depending on the initial tier results, studies may be needed to investigate reproductive and developmental toxicity, immunotoxicity, allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read‐across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes/mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis, and provides recommendations for further research in this area.514Scopus© Citations 260